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Abstract

With the development of single-cell RNA sequencing (scRNA-seq) technology, analysts need to integrate hundreds
of thousands of cells with multiple experimental batches. It is becoming increasingly difficult for users to select the
best integration methods to remove batch effects. Here, we compared the advantages and limitations of four
commonly used Scanpy-based batch-correction methods using two representative and large-scale scRNA-seq
datasets. We quantitatively evaluated batch-correction performance and efficiency. Furthermore, we discussed the
performance differences among the evaluated methods at the algorithm level.

Background

Single-cell RNA sequencing (scRNA-seq) technology pro-
vides significant support and assistance for researchers to
explore intercellular heterogeneity and gain insight into
biological processes (Hwang et al. 2018; Shalek et al. 2014;
Zeng and Dai 2019). As the cost of sequencing has de-
creased and large-scale cell atlas projects have been estab-
lished, researchers are facing the challenge of processing
single-cell sequencing data for even millions of cells
(Macosko et al. 2015; Gierahn et al. 2017; Klein et al. 2015;
Han et al. 2018; Tabula Muris, and Overall c, Logistical c,
Organ ¢, processing, Library p, sequencing, computational
data a, Cell type a, Writing g 2018). Such large-scale se-
quencing data usually require the integration of multiple
experiments, which may include data generated by different
laboratories using different cell isolation methods, RNA
capture and processing methods, library preparation
methods, and sequencing platforms. However, scRNA-seq
captures both biological and technical variations, the latter
of which is difficult to distinguish from the former when
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integrating multiple scRNA-seq datasets (Stuart and Satija
2019; Tung et al. 2017). Simply integrating the digital gene
expression (DGE) matrix across different batches may
introduce additional nonbiological bias and noise to the
gene expression counts. Generally, the batch effect is used
to describe nonbiological experimental variation caused by
sampling distinct experimentally or technologically derived
batches (Johnson et al. 2007a). These kinds of technical
biases and systematic noises may mask the biological differ-
ences between cells (Wang et al. 2019). Therefore, batch
correction is one of the key steps in scRNA-seq dataset in-
tegration for removing the batch effect and preserve bio-
logical variation. It is necessary to select the appropriate
method to correct batch effects before data integration and
downstream analysis. The Seurat v3 package in R is a very
powerful data-analyzing tool for scRNA-seq data, which
includes integration and batch-effect correction for mul-
tiple experiments based on the “anchors” strategy (Stuart
et al. 2019). However, Seurat usually takes a long time to
integrate and process a relatively large dataset. Scanpy is a
python implementation of a single-cell RNA sequence
analysis package inspired by Seurat (Wolf et al. 2018).
There are many batch-correction methods based on the
Scanpy platform with advantages over Seurat in terms of
processing efficiency and running speed. This means that
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under the same hardware conditions, it takes less time for
tools on the Scanpy platform to process scRNA-seq data.

In this study, we selected four commonly used and
relatively well-developed Scanpy-based algorithms: Re-
gress_Out (Wolf et al. 2018), ComBat (Johnson et al.
2007b), Scanorama (Hie et al. 2019), and MNN_Correct
(Haghverdi et al. 2018). The Regress_Out algorithm uses
simple linear regression to regress out unwanted sources of
variation. The ComBat method uses the empirical Bayes
framework in linear regression to achieve statistical power
with information across genes. Instead of using linear re-
gression, the MNN_Correct algorithm detects mutual near-
est neighbors (MNNs) in the high-dimensional expression
space for batch correction. Similarly, Scanorama uses ran-
domized singular value decomposition (SVD) to compress
the gene expression profiles into a low-dimensional embed-
ding and further searches the MNNs for batch correction.
In this study, we used two representative mouse scRNA-
seq resources to demonstrate their performances and char-
acteristics in correcting batch effects. First, we used lung
datasets to perform intratissue evaluation. Next, we used
kidney datasets to validate the intratissue performance. Fi-
nally, we performed evaluations across different tissues. We
used two quantitative metrics as well as performance time
to evaluate the batch-correction performance. Findings
from this work will not only inform current discussions on
the integration of multiple scRNA-seq datasets but also
provide some suggestions for the future development of
batch-correction methods.

Methods

Single-cell RNA-seq datasets

To test the four aforementioned batch-correction
methods, we used two representative and publicly avail-
able mouse scRNA-seq resources: the Mouse Cell Atlas
(MCA) (Han et al. 2018) using the Microwell-seq tech-
nique and the Tabula Muris (TM) (Tabula Muris, and
Overall ¢, Logistical ¢, Organ c, processing, Library p, se-
quencing, computational data a, Cell type a, Writing g
2018) using 10x Genomics. From the MCA dataset, we se-
lected 26 batches across 3 developmental stages from 23
tissues, including the adrenal glands, bone marrow, brain,
calvaria, heart, kidney, liver, lung, male gonad, muscle,
ribs, omentum, ovary, pancreas, peripheral blood, pla-
centa, pleura, prostate, small intestine, spleen, stomach,
testis and uterus. For the TM dataset, we selected 28
batches from 12 tissues, including the bladder, heart and
aorta, kidney, limb muscle, liver, lung, mammary glands,
marrow, spleen, thymus, tongue, and trachea. We filtered
cells with less than 500 UMI (Unique Molecular Index) in
both the MCA and TM datasets. Compared with that of
the 10x Genomics in TM, the sequencing depth of the
MCA dataset is slightly shallower, but considerable cell
flux can be obtained at a lower cost.
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Selected data sets were organized to represent the
common single-cell data integration scenarios of the
intratissue and across-tissue batch corrections. Lung
data from the MCA and TM datasets were selected to
represent the intratissue integration scenario. The MCA
lung data contain three experimental batches, and the
TM lung data contain four experimental batches. More-
over, we repeated this scenario using the MCA and TM
kidney data to validate the performance of the four
batch-correction methods. For the across-tissue batch
correction scenario, we evaluated multiple experimental
batch data, including the 26 experimental batches of the
23 tissues from the MCA database and the 28 experi-
mental batches of the 12 tissues from the TM database.

Comparison of the four batch-effect correction tools
Scanpy is a python implementation of a single-cell RNA
sequence analysis package inspired by the Seurat pack-
age in R. Using the standard Scanpy workflow as a base-
line, we tested and compared four batch-effect
correction tools, including Regress_Out, ComBat, Sca-
norama, and MNN_Correct.

In the standard Scanpy pipeline, we first filtered cells
with fewer than 200 genes and genes with fewer than 3
cells as a simple quality control. After performing
normalization to le4 counts per cell and calculating the
base-10 logarithm, we selected highly variable genes
using the standard Scanpy filter_genes_dispersion func-
tion with the default parameters. The unwanted varia-
tions of ‘n_counts’ and ‘percent_mito’ were regressed
out before we performed the standard batch-correction
function of each of the four batch-correction methods.

The four algorithms, Regress_Out, ComBat, Scanor-
ama and MNN_Correct, were run using the Scanpy
sc.pp.regress_out, sc.pp.combat, scanorama.correct and
sc.external.pp.mnn_correc functions, respectively, to re-
move the batch variations.

Then, we calculated the principle components of the
batch-corrected gene expression matrix and uniformly se-
lected the top 45 PCs for downstream analysis. A shared
nearest neighbor (SNN) graph was constructed using the
pp-neighbor function with 15 neighbors, and the t-SNE em-
bedding space was calculated using 30 perplexities to
visualize the result. Finally, the Louvain method with a fixed
resolution of 0.6 was used to cluster the single cells into
specific cell types to compare the performance of the four
batch-correction algorithms on unsupervised clustering.

Evaluation of batch-correction performance

To compare the clustering results of the four batch-
correction methods, we employed two quantitative metrics
to evaluate the batch-correction performance: the k-nearest
neighbor batch-effect test (kBET) and the average silhou-
ette width (Buttner et al. 2019; Rousseeuw 1987).
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Using SVD-based dimension reduction, kBET com-
putes the local batch label distribution of the detected k-
nearest neighbors and randomly selects 10% of the cells
to test the local batch label distribution against the glo-
bal distribution. The null hypothesis of all batches being
well mixed is rejected if the local distribution is different
from the global distribution. After PCA dimension re-
duction, we input the top 20 PCs from the batch-
corrected gene expression matrix to the kBET function.
The results of the kBET are impacted by the selection of
a predefined number of k nearest neighbors. We used
diverse k input values to run the kBET function, and the
mean values of all kBET rejection rates were used as the
final metric (Buttner et al. 2019).

The silhouette coefficient metric measures how similar one
sample is to other samples in its own cluster versus how dis-
similar it is to samples in other clusters (Rousseeuw 1987). To
avoid biased silhouette coefficient results from unbalanced
datasets, we computed the average score of the silhouette co-
efficient to measure the overall batch effect. We randomly
subsampled 80% of the original cells and used the top 20 PCs
from the batch-corrected gene expression matrix after PCA
dimension reduction. The batch_sil function of the kBET
package was used to compute the average silhouette coeffi-
cient metric. This process was repeated 10 times to ensure the
stability of the average silhouette coefficient scores. Finally, the
Wilcoxon signed-rank test with Benjamini and Hochberg cor-
rection was performed on the resulting metrics to identify if
any batch-correction algorithm was statistically significantly
better than the others.

However, we found that in some circumstances, the
local batch effect could not be measured properly be-
cause the metrics above tended to evaluate the global
batch-correction performance. Moreover, the quantita-
tive measurements did not test the biological rationale
of the corrected gene-correction matrix and downstream
analysis. Therefore, we performed inspection at the bio-
logical level to examine and analyze the local perform-
ance of the batch-correction software and test whether
the corrected DGE results were biologically rational.

Computing time benchmarks

To compare the computation resources used by the four
batch-correction methods, we recorded the CPU time
on a Linux workstation equipped with 256 GiB memory
and 32 2.10 GHz CPU cores. This study demonstrates
the performance of four batch-correction methods in
processing datasets with two different single-cell se-
quence technologies.

Results

Intratissue performance evaluation intra-tissue

To visually demonstrate the effects of the four batch-
correction methods, we applied the methods on processed
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lung data from the MCA and TM datasets. The MCA lung
data consist of three experimental batches, which include
MCA_AdultLung_1 (2512 cells), MCA_AdultLung_2 (1414
cells) and MCA_AdultLung_3 (3014 cells). To remove the
batch effect, we applied the four batch-correction methods
and directly integrated the gene expression matrix as a
baseline. We noticed that ComBat performed better, in
which cells from different experimental batches became
well mixed (Fig. 1a). Overlaying the identified cell type in-
formation onto the t-SNE plot revealed that the same cell
type from different batches was well aligned. For instance,
in the baseline result, we observed that epithelial cells and
leukocytes mainly composed MCA_AdultLung_3. After
the ComBat process, the cells from the three batches iden-
tified as one of these two cell types were well integrated
(Figure Sla). Further quantified indicators were intro-
duced to evaluate the effectiveness of these four algo-
rithms in removing batch effects. Compared to that of the
baseline, the ASW_batch score of ComBat was signifi-
cantly reduced compared to baseline (p <0.001), while
those of MNN_Correct and Regress_Out also decreased
(p < 0.05), suggesting that these three methods achieved a
more uniform cell distribution between batches (Fig. 1b).
The ASW_cluster score of Scanorama was significantly
different from that of the baseline (p <0.01), indicating
that the Scanorama process had a certain influence on the
clustering effect (Fig S2a, b). Furthermore, we observed
that ComBat and MNN_Correct showed good kBET re-
sults, but they were not statistically significant (Fig. 1c).
We performed the same analysis for the TM lung data,
which consist of four experimental batches, including TM_
AdultLung P7_8 (462 cells), TM_AdultLung P7_9 (1286
cells), TM_AdultLung P8_12 (963 cells) and TM_Adul-
tLung_P8_13 (2789 cells). At baseline, significant batch dif-
ferences were observed between two of the batches (P7_9
and P8_13), and after applying the four batch-correction
methods, the batch effects were all eliminated to some ex-
tent (Fig. 1d). In this case, Combat and Scanorama per-
formed best, in which cells from the two batches showed
reasonable integration on the t-SNE plot. One of the visible
changes was that P8_13 contributed to the majority of the
NK cells before the batch-correction process; afterwards,
however, all four batch-derived cells were well integrated
(Fig. 1d and S1b). The ASW_batch scores of ComBat and
Scanorama were significantly lower than that of the base-
line (p <0.001), suggesting that these two methods caused
the cells from the four batches to mix more uniformly. The
scores of MNN_Correct and Regress_Out also improved to
some extent over that of the baseline (p <0.05) (Fig. le).
For the TM lung data, the ASW_cluster scores of ComBat,
Regress_Out and MNN_Correct all affected the clustering
results (p<0.001) (Fig S2c, d). The kBET evaluation in-
dexes indicated that ComBat has the lowest rejection rate
(» <0.01), and the indexes of Scanorama and Regress_Out
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Fig. 1 Batch-corrected results for lung data from MCA and TM. a, The t-SNE plots present the degree of the batch effect from the MCA lung data
(consisting of 3 experimental batches) before correction (baseline) and after correction with 4 methods (Regress_Out, ComBat, Scanorama and
MNN_Correct). b, ¢, ASW_batch (boxplot) and the kBET rejection rate (line chart) evaluate the batch-correction effect in the MCA lung data. d,
The t-SNE plots present the degree of the batch effect from the TM lung data (consisting of 4 batches) before correction (baseline) and after
correction using the 4 methods (Regress_Out, ComBat, Scanorama and MNN_Correct). e, f, ASW_batch (boxplot) and the kBET rejection rate (line
chart) evaluate the batch-correction effect in the TM lung data. *p < 0.05,
and Hochberg correction was performed between each of the four postcorrection groups and the baseline group

**p <001, **p < 0.001; the Wilcoxon signed-rank test with Benjamini

were also different from that of the baseline (p < 0.01), indi-
cating that all three methods made particular corrections to
the batch effect (Fig. 1f).

Validation of the intratissue performance

We further selected the MCA_Kidney and TM_Kidney
datasets, applied the four algorithms to perform batch cor-
rection and evaluated their effects (Fig S3, S4, S5). The
MCA_Kidney dataset consists of 3 batches of scRNA-seq
data. It is worth noting that 2 batches are from fetal mice

and the other batch is from adult mice. Considering the
differences between fetal kidney and adult kidney tissues
in terms of cell type composition and gene expression pat-
terns, the large differences between the batches in the t-
SNE plot are reasonable (Fig S3a). The ASW _batch scores
of MNN_Correct and Regress_Out were significantly
lower than that of the baseline (p <0.001) (Fig S3b). The
ASW _cluster scores of ComBat, Regress_Out and Scanor-
ama changed significantly (p <0.001) (Fig S5a, b). The
KBET results indicated that ComBat, Regress_Out and
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MNN_Correct significantly improved the batch uniform-
ity (p < 0.001) (Fig S3c).

The TM dataset contains data from three batches of
adult mouse kidneys. It can be observed from the base-
line data that a group of epithelial cells were mainly de-
rived from P7_5, showing a significant batch difference.
The integration effect improved after the ComBat and
Scanorama processes were run (Fig S3d). The ASW_
batch scores of the four algorithms were all significantly
lower than that of the baseline (p <0.01) (Fig S3e). The
ASW _cluster scores of ComBat, MNN_Correct, and Re-
gress_Out were significantly different from that of the
baseline (p <0.001) (Fig S5c, d). The KBET results
showed no significant difference between the four algo-
rithms and the baseline rejection rates (Fig S3f).

Performance evaluation across different tissues
Furthermore, we evaluated the four batch-correction
methods in the processing of data from multiple experi-
mental batches, including the 26 experimental batches
of the 23 tissues from the MCA database and the 28 ex-
perimental batches of the 12 tissues from the TM data-
base. In both datasets, overlaying tissue information
onto the t-SNE plot revealed that these subpopulations
corresponded to the different tissues in the baseline re-
sults (Fig. 2). Comparing the four methods, Scanorama
and Combat performed well, while Regress_Out and
MNN_Correct performed somewhat poorly within tissue
types. For example, the batch effects of liver tissue from
the TM database and of lung tissue from the MCA data-
base could not be eliminated when using Regress_Out
and MNN_Correct, respectively. Similarly to the intratis-
sue evaluation, to more objectively compare the batch-
correction effects of the four algorithms, we introduced
three quantitative indicators: ASW_batch, ASW_cluster,
and kBET. First, when processing the MCA dataset, we
found that the ASW_batch scores of ComBat, Regress_
Out and MNN_Correct were significantly lower than
that of the baseline (p <0.001), suggesting that these
three methods perform well in improving the uniformity
of the mixed cells from the different batches (Fig. 2b).
The ASW_cluster scores of all four methods were sig-
nificantly different from that of the baseline (p <0.01)
(Fig S7b), indicating that after integrating multiple
batches, these four methods affected the clustering re-
sults. One good example is that in the grouping results
obtained after running the ComBat process, the cell sub-
groups in the middle were significantly more chaotic
(Fig S7a). There was no statistically significant difference
between the four methods and the baseline in terms of
the kBET results (Fig. 2c).

The results were different when processing the TM
dataset. The ASW_batch score of Scanorama was signifi-
cantly lower than that of the baseline (p < 0.05) (Fig. 2e),
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while its ASW _cluster score was not different from the
baseline score (Fig S7d). It is worth mentioning that the
ASW_cluster score measures the degree of aggregation of
Louvain clusters, and the effect of the cluster results needs
to be further discussed in terms of biological significance.
For instance, Scanorama eliminates within-tissue batch ef-
fects well within but preserves certain between-tissue batch
effects, such as those between marrow and thymus tissue
from the TM database. On the t-SNE map, the marrow
and thymus are integrated after using Scanorama (Fig. 2d).
Combining the results of cell annotation (Fig S6), B cells in
the marrow and T cells in the thymus are integrated, pos-
sibly due to the similarity in the expression profiles of these
immune cells. This may explain the integrated state be-
tween marrow and thymus when using Scanorama. As with
the MCA database, there was no statistically significant dif-
ference between the four methods compared with the base-
line in the kBET results for the TM database (Fig. 2f).

In addition, we selected two more datasets containing
multiple tissues (TM_P4 with 7823 cells and TM_P7 with
21,383 cells) and evaluated them using the three quantita-
tive indicators (ASW_batch, ASW _cluster and kBET). We
discovered that ComBat always performed better than the
other methods with these datasets (Fig S8).

During the exploration, we noticed that kBET was in-
sufficiently stable. When faced with different datasets,
the results displayed by kBET were highly variable. On
the other hand, the two ASW indicators were relatively
stable. Therefore, we chose ASW _batch and ASW _clus-
ter as quantitative indicators to evaluate the batch-
correction effect.

Computing time benchmarks

In addition to comparing the batch-correction perform-
ance, we also recorded the time used by the four algo-
rithms to process datasets of different sizes. To obtain
such datasets, we downsampled the MCA and TM data-
sets to obtain a total of 9 sets of data containing between
~ 2000 and ~ 140,000 cells, while the number of highly
variable genes (HVGs) was controlled in a range from ~
2000 to ~ 3000 (Table S1). We found that Scanorama
and ComBat consumed less time than Regress_Out and
MNN_Correct when processing relatively small datasets
(< 10,000 cells and < 10 batches) (Fig S9a). When pro-
cessing a small data set of ~ 2000 cells, all four methods
took less than 2 min. For datasets with more than 4000
cells, Regress_Out and MNN_Correct needed up to tens
of minutes to complete the process; Scanorama only
took approximately 2—6 min, whereas ComBat has the
highest efficiency, completing the process in less than 2
min. A similar result was found when processing a larger
data set (> 10,000 cells or > 10 batches). The order of the
algorithms in terms of the computing times is as follows:
MNN_Correct > Regress_Out > Scanorama > Combat
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Fig. 2 Batch-correction results for multiple tissues from MCA and TM. a, The t-SNE plots present the degree of the batch effect from the MCA
multitissue data (containing 26 experimental batches of 23 tissues) before correction (baseline) and after correction using four methods
(Regress_Out, ComBat, Scanorama and MNN_Correct). b, ¢, ASW_batch (boxplot) and the kBET rejection rate (line chart) evaluate the batch-
correction effect in the MCA multitissue data. d, The t-SNE plots present the degree of the batch effect from the TM multitissue data (containing
28 experimental batches of 12 tissues) before correction (baseline) and after correction using the four methods (Regress_Out, ComBat, Scanorama
and MNN_Correct). e, f, ASW_batch (boxplot) and the kBET rejection rate (line chart) evaluate the batch-correction effect in the TM multitissue
data. *p <0.01, ***p < 0.001; the Wilcoxon signed-rank test with Benjamini and Hochberg correction was performed between each of the four
postcorrection groups and the baseline group

(Fig S9b). Note that MNN_Correct took more than 660  method in terms of the batch-correction performance
min to process fewer than 50,000 cells. In summary, and the computing efficiency (Figs. 1, 2, S9). The Re-
when working with an scRNA-seq dataset with a large  gress_Out algorithm uses a general linear model (GLM)
number of cells and a large number of batches to be in-  to regress out unwanted sources of variation in the ex-
tegrated, ComBat, Scanorama and Regress_Out are more  pression matrix. The coefficient for each batch block is
recommended if the time cost is the only consideration. estimated by fitting the GLM and is then set to zero to

remove the corresponding batch effect. The ComBat al-
Discussion gorithm uses the same strategy but performs an empir-
Although the Regress_Out and ComBat algorithms are ical Bayes (EB) framework to adjust the expression
both based on linear regression, we noticed the superior-  matrix for batch correction. The EB framework is usu-
ity of the ComBat method compared to the Regress_Out ally designed to shrink gene variances and remove the
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inferred batch effect by fitting a Bayesian model. ComBat
first standardizes all gene expression values across cells and fits
the data into a standard distribution Bayesian model. Then, it
can infer the batch effects using the estimated model and ad-
just the gene variances (Johnson et al. 2007a; Leek 2014). Due
to the empirical Bayesian shrinkage of the blocking coefficient
estimates, the ComBat algorithm is quite robust when pro-
cessing diverse batches, which is also reflected in our analysis
in both the MCA and TM data sets (Figs. 1, 2).

Different from the linear regression used in Regress_Out
and ComBat, the MNN_Correct method and Scanorama
method search MNNSs between batches to adjust the ex-
pression matrix. MNNs define the most similar cells across
batches in single-cell gene expression analysis. Compared
to the linear regression-based methods, MNN-based
methods regard less of the predefined or equal population
compositions across batches and tend to merge similar cells
across batches. For instance, in our performance evaluation
across different tissues, we noticed that Scanorama inte-
grated B cells in the marrow and T cells in the thymus due
to the similarity in the expression profiles of the immune
cells (Fig. 2d, Fig S6).

Moreover, we noticed that the Scanorama method
gains a significant speed advantage over MNN_Correct,
especially when we perform batch correction in a large
data set (Fig S9). MNN_Correct first uses cosine
normalization to scale all gene expression values and
compute the Euclidean distances to identify mutual
nearest neighbors. Then, the differences in the expres-
sion values of the identified MNN pairs are calculated to
estimate the batch effect. Finally, the batch-correction
vector is computed and applied to adjust the expression
matrix (Haghverdi et al. 2018). MNNs searching be-
tween batches usually spends considerable computing
time. Two procedures in Scanorama are implemented to
improve the performance of the MNN searches. First,
randomized singular value decomposition (SVD) is used
to reduce the dimensions of the original gene expression
matrix. The SVD compression procedure helps to speed
up the MNN search and improve the robustness of the
algorithm. Second, unlike the MNN pair search in the
MNN_Correct algorithm, Scanorama finds the nearest
neighbors among all data sets and creates a panorama
using a weighted average of vectors (Hie et al. 2019).
Therefore, Scanorama is more insensitive to input order
and less vulnerable to overcorrection.

Conclusions

In this article, we compared and evaluated four Scanpy-
based batch-correction methods using representative
single-cell transcription datasets. First, we selected a large
number of single-cell transcription public datasets, includ-
ing complex experimental and technological batches. Se-
lected data sets were organized to represent common
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single-cell data integration scenarios for intratissue and
across-tissue batch correction. Our results indicated that,
among the four batch-correction methods investigated
here, the ComBat method performed the most efficiently
and robustly in most of the scenarios we evaluated. The su-
perior batch-correction performance of the ComBat is due
to its integrated empirical Bayes (EB) framework. Regard-
less of the presumption of equal population composition,
Scanorama also effectively corrected and integrated the
gene expression matrix of diverse batches with relatively
reasonable computing resource requirements. We then dis-
cussed the performance differences among the evaluated
methods at the algorithm level. In conclusion, we recom-
mend employing the ComBat and Scanorama methods to
correct batch effects when integrating large single-cell tran-
scriptome datasets.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513619-020-00041-9.

Additional file 1 : Figure S1. Identified cell-type information from lung
data from the MCA and TM datasets overlaid onto the t-SNE plot. a, The
t-SNE plots present the alignment of 14 previously identified cell types in
the lung from the MCA dataset before and after using four batch-
correction methods. b, The t-SNE plots present the alignment of 12 previ-
ously identified cell types in the lung from the TM dataset before and
after using the four batch-correction methods.

Additional file 2 : Figure S2. Unsupervised clustering results for lung
data from the MCA and TM datasets. a, The t-SNE plots visualize the re-
sults of the unsupervised clustering of the MCA lung data before and
after using four batch-correction methods. b, ASW_cluster (boxplot) mea-
sures the degree of aggregation of the Louvain clusters in the MCA lung
data. ¢, The t-SNE plots visualize the results of the unsupervised clustering
of the TM lung data before and after using the four batch-correction
methods. d, ASW_cluster (boxplot) measures the degree of aggregation
of the Louvain clusters in the TM lung data. **p < 0.01, ***p < 0.001; the
Wilcoxon signed-rank test with Benjamini and Hochberg correction was
performed between each of the four postcorrection groups and the
baseline group.

Additional file 3 : Figure S3. Batch-corrected results for kidney data
from the MCA and TM datasets. a, The t-SNE plots present the degree of
the batch effect from the MCA kidney data (consisting of 3 experimental
batches) before correction (baseline) and after correction using 4
methods (Regress_Out, ComBat, Scanorama and MNN_Correct). b, ¢,
ASW_batch (boxplot) and the kBET rejection rate (line chart) evaluate the
batch-correction effect in the MCA kidney data. d, The t-SNE plots present
the degree of the batch effect from the TM kidney data (consisting of 3
batches) before correction (baseline) and after correction using the 4
methods (Regress_Out, ComBat, Scanorama and MNN_Correct). e, f,
ASW_batch (boxplot) and the kBET rejection rate (line chart) evaluate the
batch-correction effect in the TM kidney data. **p < 0.01, ***p < 0.001; the
Wilcoxon signed-rank test with Benjamini and Hochberg correction was
performed between each of the four postcorrection groups and the
baseline group.

Additional file 4 : Figure S4. |dentified cell-type information from kid-
ney data from the MCA and TM datasets overlaid onto the t-SNE plot. a,
The t-SNE plots present the alignment of 14 previously identified cell
types in the kidney from the MCA dataset before and after using four
batch-correction methods. b, The t-SNE plots present the alignment of 6
previously identified cell types in kidney from the TM dataset before and

after using the four batch-correction methods.
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Additional file 5 : Figure S5. Unsupervised clustering results for kidney
data from the MCA and TM. a, The t-SNE plots visualize the results of un-
supervised clustering of the MCA kidney data before and after using four
batch-correction methods. b, ASW_cluster (boxplot) measures the degree
of aggregation of the Louvain clusters in the MCA kidney data. ¢, The t-
SNE plots visualize the results of unsupervised clustering of the TM kidney
data before and after using four batch-correction methods. d, ASW_clus-
ter (boxplot) measures the degree of aggregation of the Louvain clusters
in the TM kidney data. ***p < 0.001; the Wilcoxon signed-rank test with
Benjamini and Hochberg correction was performed on each of the four
postcorrection groups and the baseline group.

Additional file 6 : Figure S6. Identified cell-type information from mul-
titissue data from the MCA and TM database overlaid onto the t-SNE plot.
a, The t-SNE plots present the alignment of 26 previously identified cell
types in multiple tissues from the MCA dataset before and after using
four batch-correction methods. b, The t-SNE plots present the alignment
of 24 previously identified cell types in multiple tissues from the TM data-
set before and after using four batch-correction methods.

Additional file 7 : Figure S7. Unsupervised clustering results for
multitissue data from the MCA and TM datasets. a, The t-SNE plots
visualize the results of the unsupervised clustering of MCA multitissue
data before and after using four batch-correction methods. b, ASW_clus-
ter (boxplot) measures the degree of aggregation of the Louvain clusters
in the MCA multitissue data. ¢, The t-SNE plots visualize the results of the
unsupervised clustering of the TM multitissue data before and after using
four batch-correction methods. d, ASW_cluster (boxplot) measures the
degree of aggregation of the Louvain clusters in the TM multitissue data.
**p < 0.01, **p < 0.001; the Wilcoxon signed-rank test with Benjamini and
Hochberg correction was performed between each of the four postcor-
rection groups and the baseline group.

Additional file 8 : Figure S8. Quantitative indicators evaluate the
batch-correction results from the TM_P4 and TM_P7 datasets. a, ASW_-
batch (boxplot), ASW_cluster (boxplot) and the kBET rejection rate (line
chart) evaluate the batch-correction effect in the TM_P4 data. b, ASW_-
batch (boxplot), ASW_cluster (boxplot) and kBET rejection rate (line chart)
evaluate the batch-correction effect in the TM_P7 data. **p < 0.01, ***p <
0.001; the Wilcoxon signed-rank test with Benjamini and Hochberg cor-
rection was performed between each of the four postcorrection groups
and the baseline group.

Additional file 9 : Figure S9. Computing time costs of the 4 batch-
correction methods in processing 9 datasets. a, A line chart presents the
computing time costs of the 4 batch-correction methods in 4 small data-
sets (< 10,000 cells and < 10 batches). b, A line chart presents the com-
puting time costs of the 4 batch-correction methods in 5 large datasets
(> 10,000 cells or > 10 batches).

Additional file 10 : Table S1. Computing time of the 4 batch-
correction methods under different conditions. Record of the computing
time of the 4 batch-correction methods (Regress_Out, ComBat, Scanor-
ama and MNN_Correct) in processing 9 datasets independently.

Abbreviations
scRNA-seq: single-cell RNA sequencing; MNNs: mutual nearest neighbors;
SVD: singular value decomposition; MCA: Mouse Cell Atlas; TM: Tabula Muris
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