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Abstract

Heart disease is the leading cause of mortality worldwide. Due to the limited proliferation rate of mature cardiomyocytes,
adult mammalian hearts are unable to regenerate damaged cardiac muscle following injury. Instead, injured area is
replaced by fibrotic scar tissue, which may lead to irreversible cardiac remodeling and organ failure. In contrast, adult
zebrafish and neonatal mammalian possess the capacity for heart regeneration and have been widely used as
experimental models. Recent studies have shown that multiple types of cells within the heart can respond to
injury with the activation of distinct signaling pathways. Determining the specific contributions of each cell
type is essential for our understanding of the regeneration network organization throughout the heart. In this
review, we provide an overview of the distinct functions and coordinated cell behaviors of several major cell
types including cardiomyocytes, endocardial cells, epicardial cells, fibroblasts, and immune cells. The topic
focuses on their specific responses and cellular plasticity after injury, and potential therapeutic applications.
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Background
Coronary artery occlusion induced cardiac infarction
leads to extensive cell death. Although a small portion of
cardiomyocytes in the wound border display cell cycle
activities, cell division events are rare and insufficient to
restore damaged myocardium. Instead, injured area is
replaced by fast dividing fibroblasts, which give rise to fi-
brotic scar tissue and further promote cardiac structural
remodeling and deteriorated function. Thus, one major
goal of cardiac regenerative medicine is to develop
therapeutic strategies that boost the intrinsic prolifera-
tion of cardiomyocytes for functional recovery. To this
end, various animals have been used as in vivo models
to explore heart regeneration. Initial studies were con-
ducted in lower vertebrates such as newts (Oberpriller &

Oberpriller, 1974) and axolotls (Flink, 2002), as they
have displayed a broad range of regenerative capacities
in multiple organs. Experimental results indicated the
presence of cardiomyocyte proliferation that partially re-
placed injured myocardium. However, due to a lack of
genetic tools to dissect the underlying molecular mecha-
nisms, progress in these animal models has been rela-
tively slow.
In 2002, adult zebrafish heart regeneration was first

reported (Poss et al., 2002). Compared with newt and
axolotl, a major advantage of the zebrafish model is the
availability of a large number of transgenic or gene dele-
tion strains, which are essential to define the function of
specific genes. As a result, key molecular and cellular
events underlying zebrafish heart regeneration have been
discovered in the past two decades, such as the activa-
tion of epicardium (Kikuchi et al., 2011a; Lepilina et al.,
2006), changes in epigenetic programming (Xiao et al.,
2016), reactivation of key cardiac developmental related
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transcription factor genes (Kikuchi et al., 2010), and
disassembly of cardiomyocyte sarcomeric structure
(details of these events will be discussed in the fol-
lowing sections). However, hearts in lower vertebrates
are generally considered immature when compared
with those of adult mammalians due to their highly
trabeculated cardiac structure and a lack of transverse
tubules in cardiomyocytes. Thus, there remains a
need for a cardiac regeneration model in the mamma-
lian. In 2011, a breakthrough was achieved in the dis-
covery of regeneration in a neonatal mouse model
(Porrello et al., 2011). As opposed to the persistent
regenerative capacity exhibited throughout life in zebrafish,
this time window stops at postnatal day 7 in mouse models.
Nevertheless, advanced genetic tools in mammalians such
as conditional knockout and knockin models have provided
the opportunity to acquire additional information regarding
molecular and cellular mechanisms involved. Overall, our
current knowledge of heart regeneration comes from stud-
ies in adult lower vertebrate such as zebrafish (Poss et al.,
2002), newt (Oberpriller & Oberpriller, 1974) and axolotl
(Flink, 2002), as well as neonatal mammalian including
mouse (Porrello et al., 2011), rat (Wang et al., 2020), pig
(Zhu et al., 2018; Ye et al., 2018), and human (Haubner
et al., 2016).

Adult heart contains multiple cell types including
cardiomyocytes, endocardial cells, epicardial cells, fi-
broblasts, immune cells, blood cells, and vascular
smooth muscle cells, which play distinct physio-
logical roles. The major function of cardiomyocytes
is to generate rhythmic contractions that maintain
circulation. Endocardial cells form a lining within
the cardiac lumen as a physical barrier for blood
flow. On the outer surface of the heart, a thin layer
of epicardial cells covers the entire myocardium that
can give rise to coronary vascular smooth muscle
cells and fibroblasts. In addition, with interspersed
distributions between cardiomyocytes, there are
abundant fibroblasts which synthesize extracellular
matrix (ECM) to provide mechanical support for the
heart. Overall, these different cell types establish
cell-cell communications via direct contact or
through secreted signaling molecules to maintain
physiological cardiac function in a resting state. Fol-
lowing injury, the proliferation of a subpopulation of
cardiomyocytes is reliant on extrinsic cues from epi-
cardial, endocardial cells, fibroblasts, and immune
cells. This tightly coordinated behavior of various
cell types is required for morphological and func-
tional regeneration (Fig. 1).

Fig. 1 Cell type-specific responses to cardiac injury. a The outer surface and luminal surface of the myocardium is covered by epicardial cells and
endocardial cells, respectively. Fibroblasts reside between cardiomyocytes within the myocardium. After injury, the activation of epicardial cell,
endocardial cells, fibroblasts, and immune cells, together with proliferation of cardiomyocytes, contribute to heart regeneration. b Summary of
activated signaling pathways after injury and applications in animal models
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Cell type-specific responses
Cardiomyocytes
Cardiomyocytes are elementary units of contractile func-
tion within the heart. Each heartbeat starts with an elec-
trical impulse from pacemaker cells, which propagates
through the cardiac conduction system and triggers syn-
chronized contraction of cardiomyocytes in order to
drive the circulation of blood flow. The mammalian
heart develops from two distinct cardiac progenitor pop-
ulations: the first heart field, which gives rise to the left
ventricle and majority of the atria; and the second heart
field, which contributes to the right ventricle, parts of
the atria and outflow tract. Cardiac progenitor cells in
both fields further give rise to two layer of cells in the
developing heart tube consisting of an inner layer of
endocardial cells and an outer layer of cardiomyocytes
(Chien et al., 2008).
Under a resting state, mature mammalian cardiomyocytes

exhibit a very limited turnover rate estimated at less than
1% per year in adult human hearts (Bergmann et al., 2009;
Bergmann et al., 2015). After injury, although part of the
cardiomyocytes close to wound border display cell cycle
activities, authentic cell divisions are extremely low and in-
sufficient to restore lost cells. In contrast, adult lower verte-
brate or neonatal mammalian cardiomyocytes present a
strong proliferative capacity and hearts are able to regener-
ate after injury. Genetic fate mapping studies have demon-
strated that regenerated heart muscle is derived from
preexisting cardiomyocytes (Kikuchi et al., 2010; Porrello
et al., 2011; Jopling et al., 2010), while contributions from
resident stem or progenitor cells is minimal (Li et al., 2018).
Furthermore, regenerating cardiomyocytes undergo a lim-
ited extent of reprogramming, characterized by reactivation
of the essential cardiac developmental related transcription
factors such as gata4 ( Kikuchi et al., 2010) and hand2 (
Schindler et al., 2014), adoption of a more glycolytic metab-
olism state (Honkoop et al., 2019), and disassembly of sar-
comeric ultrastructure (Jopling et al., 2010; Engel et al.,
2005; Engel et al., 2006; Ahuja et al., 2004). Interestingly,
adult mammalian cardiomyocytes exhibit disassembled
centrosome which is associated with cell cycle arrest,
whereas centrosome integrity in adult lower vertebrates or
neonatal mammalian cardiomyocytes remains intact
(Zebrowski et al., 2015). In addition, heterochromatin
accumulation and targeting of proliferation-activating
genes to the transcriptionally silent regions has also
been shown as the cell cycle exit mechanism in adult
mammalian cardiomyocytes (Sdek et al., 2011). Never-
theless, how the intrinsic differences between regener-
ating and non-regenerating cardiomyocytes lead to
divergent responses to injury remains elusive.
Our current knowledge of the activated signaling path-

ways within regenerating cardiomyocytes includes: (1)
Hippo signaling: The mammalian Hippo signaling core

components include Mst1 and Mst2, which form a com-
plex with Salvador (Salv) to phosphorylate Lats1 and
Lats2. Lats1/2 kinases further phosphorylate transcrip-
tional co-activators Yap and Taz to exclude them from
cell nuclei and limit their transcriptional activity. Salv
gene knockout study has demonstrated that Hippo sig-
naling limits cardiomyocyte proliferation and heart size
during development (Heallen et al., 2011). After myocar-
dial infarction, Hippo signaling deficient adult hearts
display efficient regeneration with reduced scar size
(Heallen et al., 2013; Leach et al., 2017). In addition,
cardiomyocyte-specific expression of a constitutively ac-
tive Yap also enhances regeneration and contractile
function after infarction (Xin et al., 2013). Recent studies
further demonstrate that Hippo signaling is regulated by
cardiac tissue stiffness and ECM rigidity. The dystrophin
glycoprotein complex (DGC), which links cardiomyocyte
actin cytoskeleton structure to ECM, directly binds to
Yap and inhibits cell proliferation (Morikawa et al.,
2017). Moreover, ECM glycoprotein agrin stimulates the
proliferation of cardiomyocytes through the disassembly
of DGC and subsequent Yap translocation into the nu-
clei (Bassat et al., 2017). (2) Reactive oxygen species
(ROS) signaling: The major sources of ROS production
are NADPH oxidase (Nox), dual oxidase (Duox) on the
cell membrane, and mitochondria. Compared with adult
mammalian heart, embryonic heart resides in an envir-
onment of low oxygen level. Shortly after birth, the in-
creased oxygenation state and mitochondrial content,
and the shift from glycolysis to oxidative metabolism
leads to elevated ROS production in cardiomyocytes,
which triggers DNA damage response and cardiomyo-
cytes cell cycle arrest, as well as loss of regenerative cap-
acity (Puente et al., 2014). Likewise, it has also been
reported that Pitx2 promotes neonatal heart regener-
ation by activating ROS scavengers for its clearance (Tao
et al., 2016). Accordingly, when adult mice are gradually
exposed to systemic hypoxia, decreased ROS and DNA
damage is sufficient to induce a robust regenerative re-
sponse after infarction (Nakada et al., 2017). In zebrafish,
cardiac resection induces epicardial nox/duox expression
and ROS component H2O2 production. Elevated ROS
destabilizes the redox sensitive phosphatase dusp6, a key
negative regulator of erk1/2, thus activates MAP kinase
signaling to promote myocardial regeneration (Han
et al., 2014). (3) Nrg1-Erbb2 signaling: The function of
this signaling pathway has been studied extensively dur-
ing mammalian (Gassmann et al., 1995; Lee et al., 1995;
Meyer & Birchmeier, 1995) and zebrafish cardiac trabe-
culation (Liu et al., 2010; Han et al., 2016). Endocardial
cell secreted Neuregulin 1 (Nrg1) binds to its receptor
Erbb2/Erbb4 heterodimer on cardiomyocytes membrane
and triggers downstream signaling cascade to promote
cell proliferation and migration. After adult zebrafish
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heart injury, expression of nrg1 is elevated in perivascu-
lar cells, while inhibition of this signaling pathway sup-
presses regeneration (Gemberling et al., 2015). Similarly,
in neonatal mice hearts, transient Erbb2 activation ex-
tends the regenerative window beyond the first week of
postnatal life (D'Uva et al., 2015).
Although fine-tuning of these signaling pathways is

effective in animal models to reactivate the intrinsic
proliferative capacity of cardiomyocytes, applying such
knowledge in a spatiotemporal and tissue-specific man-
ner for therapeutic purposes still remains technically
challenging. A recent review has critically analyzed the
current literature regarding strategies to induce cardio-
myocyte proliferation and heart regeneration (Leone &
Engel, 2019). In addition, an alternative approach to re-
juvenate injured heart is utilizing embryonic stem cells
(Shiba et al., 2012; Chong et al., 2014; Liu et al., 2018) or
induced pluripotent stem cells (Shiba et al., 2016; Liang
et al., 2019). When injected into injured myocardium,
these stem cell-derived cardiomyocytes partially engraft
into the heart and provide functional improvement.
However, a subset of animals also experience ventricular
arrhythmias due to graft-associated ectopic pacemaker
activities, suggesting incomplete electrophysiological
coupling between implanted and host cardiomyocytes
(Liu et al., 2018). Interestingly, a recent study argues the
cardiac function enhancement after stem cell therapy is
not associated with de novo cardiomyocyte production.
Instead, an acute inflammatory based wound healing re-
sponse, mediated by macrophages, is essential for the
restoration of the mechanical properties of injured heart
(Vagnozzi et al., 2020).

Endocardial cells
Endocardial cells are a thin layer of specialized endothe-
lial cells which cover the luminal surface of the heart
that provides a physiological barrier for blood circulation.
During development, endocardial cells can further give rise
to cushion mesenchyme cells through endothelial-to-
mesenchymal transition to form heart valve (de Lange
et al., 2004; Lincoln et al., 2004). They also contribute to
cardiac pericytes, smooth muscle cells (Chen et al., 2016),
and adipocytes (Zhang et al., 2016) through intermediate
mesenchymal stages. In addition, a subpopulation of the
endocardial cells bud out from the heart lumen and directly
generate part of the coronary endothelial cells (Red-Horse
et al., 2010; Wu et al., 2012; Tian et al., 2014). Furthermore,
endocardial cells promote cardiac trabeculation and cardio-
myocyte maturation through paracrine signaling.
When cardiac tissue homeostasis is interrupted by in-

jury, genetic fate mapping studies demonstrate that
endocardial cells minimally contribute to coronary endo-
thelial cells (Tang et al., 2018). Instead, they serve as an
important signaling center for heart regeneration. The

activated signaling pathways include: (1) Notch signal-
ing: Activation of Notch signaling has been studied in a
variety of injury models. Following zebrafish heart resec-
tion injury, expression levels of notch1a, notch1b, and
notch2 are prominently elevated in the endocardium
(Zhao et al., 2014). Likewise, after cryoinjury, notch1b,
notch2, and notch3 are induced in endocardial cells
(Munch et al., 2017). In addition, by using a ventricular
cardiomyocytes-specific ablation system together with a
Notch reporter transgenic line, increased Notch activity
has been observed in atrial endocardial cells after embry-
onic heart injury, which results from elevated notch1b
and deltaD expression (Zhang et al., 2013; Galvez-
Santisteban et al., 2019). Pharmacological or genetic sup-
pression of Notch activity consistently inhibits cardio-
myocyte proliferation and impairs heart regeneration in
these studies (Zhao et al., 2014; Munch et al., 2017;
Zhang et al., 2013; Galvez-Santisteban et al., 2019; Zhao
et al., 2019; Raya et al., 2003). However, it should be
noted that hyperactivation of Notch signaling has con-
troversial effects on cardiomyocyte proliferation (Zhao
et al., 2014; Munch et al., 2017). The reason for this
controversy is still unclear. (2) Bone Morphogenetic
Protein (BMP) signaling: Phosphorylated Smad1/5/8,
which reflects the activation of Bmp signaling, is de-
tected in endocardial cells, epicardial cells, and cardio-
myocytes in injured zebrafish heart (Wu et al., 2016).
Additionally, expression of BMP ligands bmp2b, bmp7,
together with the receptor bmpr1aa, are elevated in cells
surrounding the injury zone, albeit the identities of these
cells remain to be elucidated. Overexpression of Bmp
antagonist noggin3 impairs regeneration, whereas heart
overexpressing Bmp ligand bmp2b exhibits an opposite
effect. However, the exact role for BMP signaling in
endocardial cells still remains elusive, since phosphory-
lated Smad1/5/8 presents in multiple cell types, and the
aforementioned genetic studies are not conducted in a
tissue-specific manner. (3) Retinoic Acid (RA) signal-
ing: Expression of the RA synthesizing enzyme raldh2 is
rapidly induced in endocardial and epicardial cells after
zebrafish (Lepilina et al., 2006; Kikuchi et al., 2011b) or
mouse (Porrello et al., 2011) heart injury. Overexpres-
sion of the RA-degrading enzyme cyp26a1 or the domin-
ant negative RA receptor leads to inhibition of this
signaling pathway and defective cardiac regeneration
(Kikuchi et al., 2011b). Nevertheless, cell type-specific
techniques are still required to define the effects of RA
signaling in the endocardium. (4) Insulin-like Growth
Factor (IGF) signaling: In the regenerating zebrafish
heart, the ligand gene igf2b is detected in endocardial
cells and epicardial cells (Choi et al., 2013; Huang et al.,
2013), whereas its receptor igfr1 expresses in cardiomyo-
cytes (Choi et al., 2013). Blocking IGF signaling de-
creases cardiomyocyte proliferation and impairs heart
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regeneration (Choi et al., 2013; Huang et al., 2013), while
treatment with an IGF signaling agonist results in an op-
posite effect (Choi et al., 2013).

Epicardial cells
Epicardial cells originate from transient embryonic
extracardiac tissue, namely the proepicardium. During
development, proepicardial cells protrude, attach to, and
finally cover the surface of embryonic myocardium to
form a layer of epicardium (Maya-Ramos et al., 2013).
Cellular identity of epicardial cells is defined by expres-
sion of Transcription factor 21 (Tcf21), T-box 18
(Tbx18) or Wilms’ tumor 1 (Wt1) (Acharya et al., 2012;
Zhou et al., 2008; Cai et al., 2008). Epicardial cells can
further give rise to cardiac fibroblasts and coronary vascular
smooth muscle cells through epithelial-to-mesenchymal
transition and provide structural support for the heart
(Zhou et al., 2008; Cai et al., 2008).
After resection injury in both zebrafish and neonatal

mice, re-expression of Raldh2 (Lepilina et al., 2006;
Kikuchi et al., 2011b), Tbx18 (Schnabel et al., 2011), or
Wt1 (Porrello et al., 2011; Schnabel et al., 2011;
Gonzalez-Rosa et al., 2011), and rapid epicardial activa-
tion have been reported. Studies in the past two decades
have demonstrated the involvement of multiple signaling
pathways in epicardial cells, including Fibroblast Growth
Factor (FGF), RA, Transforming Growth Factor-beta
(TGFβ) and BMP, Platelet-Derived Growth Factor
(PDGF), IGF, Notch, Wnt/β-catenin, and Hedgehog
(Hh) signaling. The distinct roles of these signaling path-
ways have been reviewed elsewhere (Cao & Poss, 2018).
In general, activation of these signaling pathways either
regulates the proliferation of epicardial cells or mediates
crosstalk between epicardial cells and other cell lineages.
In addition, studies in model organisms have demon-

strated that the contribution of epicardial cells to cardio-
myocytes is minimal after injury (Kikuchi et al., 2011a;
Christoffels et al., 2009; Rudat & Kispert, 2012). Instead,
they transdifferentiate into vascular smooth muscle cells
or pericytes (Kikuchi et al., 2011a; van Wijk et al., 2012;
Zhou et al., 2011), which are essential for cardiac repair
and scar formation. In order to utilize such characteris-
tics of epicardial cells for therapeutic purposes, different
strategies have been applied to generate epicardial cells
from pluripotent stem cells in vitro (Witty et al., 2014;
Iyer et al., 2016). These epicardial cells express markers
like Tbx18, Wt1 and Aldh1a2 and are able to transdiffer-
entiate into fibroblasts and vascular smooth muscle lineages
when epithelial-to-mesenchymal condition is induced, cor-
roborating the epithelial identity. Accordingly, when trans-
planted into infarcted heart, these stem cell-derived
epicardial cells transdifferentiate into fibroblasts (Bargehr
et al., 2019). Furthermore, co-transplantation of epicardial
cells and cardiomyocytes results in larger graft size,

increased host vascularization, and improved systolic func-
tion (Bargehr et al., 2019), making them a promising thera-
peutic target for heart regeneration.

Fibroblasts
The major developmental source of mammalian cardiac
fibroblast is the embryonic epicardium, while the endo-
cardium also contributes to a relatively small portion
(Moore-Morris et al., 2014). Fibroblasts are essential for
maintaining normal structure and function of adult
hearts through production of ECM, which is composed
of collagen, laminin, fibronectin, fibrillin, elastin, proteo-
glycan, and other components (Lockhart et al., 2011;
Hortells et al., 2019; Souders et al., 2009). ECM proteins
not only provide mechanical support for other cell line-
ages, but also determine the biomechanical characteris-
tics such as stiffness of cardiac tissue, thus generating a
microenvironment for cardiomyocyte proliferation.
Although generally in a low proliferative state, cardiac

fibroblasts are activated through cytokine stimulation
upon injury (Stempien-Otero et al., 2016). A subpopula-
tion of these activated fibroblasts further differentiate
into myofibroblasts, initially defined by the expression of
alpha-smooth muscle actin (α-SMA) (Souders et al.,
2009; Snider et al., 2009). Recent studies have identified
Periostin as another marker that is only expressed after
injury and labels nearly all myofibroblasts (Snider et al.,
2009; Kaur et al., 2016; Kanisicak et al., 2016). These ac-
tivated fibroblasts present pro-angiogenic and pro-
fibrotic activities, which are important for collagen for-
mation and subsequent cardiac tissue wound healing.
Thus, elimination of those cells often results in ventricu-
lar rupture (Kanisicak et al., 2016). In addition, cardiac
ECM generated by fibroblasts also plays an essential role
during regeneration. As previously mentioned, heparan
sulfate proteoglycan agrin has been identified as critical
for neonatal mouse heart regeneration through the dis-
assembly of DGC. In infarcted adult mouse heart, a sin-
gle administration of agrin promotes cardiac function
recovery (Bassat et al., 2017). Furthermore, decreasing
ECM stiffness is able to prolong the time window of re-
generative capacity in neonatal mouse heart (Notari
et al., 2018). However, in lower vertebrates including
zebrafish (Sanchez-Iranzo et al., 2018), newt (Mercer
et al., 2013) and axolotl (Godwin et al., 2017), although
studies have documented the potential involvement of fi-
broblasts during heart regeneration, their specific func-
tions remain largely unexplored, partly results from a
lack of specific genetic markers to identify fibroblasts.
Despite this beneficial role for cardiac repair during

the acute phase, activation of fibroblasts leads to fibrosis,
which can contribute to impaired cardiac function and
arrhythmias over the long term. Consequently, direct re-
programming of fibroblasts to cardiomyocytes could
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have beneficial effects on injured heart, given the abun-
dant pool of fibroblasts within the heart. A recent study
has utilized a retroviral system to deliver a set of core
transcription factors including Gata4, Hand2, Mef2c,
and Tbx5 (GHMT) into injured hearts. After 4 weeks,
fibroblasts that have been labelled by lineage-tracing
strategy could be successfully reprogrammed into
cardiac-like myocytes in vivo (Song et al., 2012). Like-
wise, another study has shown similar results by utilizing
Gata4, Mef2c, and Tbx5 (GMT) combination (Qian
et al., 2012). In both conditions, pronounced functional
improvement of cardiac function has been observed.
However, it is worth noting that in another study, GMT
overexpression in fibroblasts is inefficient to induce the
electrophysiological characteristics of mature cardiomyo-
cytes (Chen et al., 2012). Such discrepancy might result
from the utilization of different protocols or mouse
strains, or the inherent heterogeneity of cardiac fibro-
blasts. To this end, single-cell transcriptome study has
been used to study the temporal dynamics of gene ex-
pression in different subpopulations of fibroblasts during
reprogramming, which has further identified Ptbp1 as a
critical barrier for reprogramming efficiency (Liu et al.,
2017). In addition, these directly reprogrammed cardio-
myocytes in vivo are more mature and closely resemble
endogenous cardiomyocytes, compared with in vitro re-
programming using similar methods (Song et al., 2012;
Qian et al., 2012). This observation might be related to
the native microenvironment of the intact heart, includ-
ing locally secreted growth factors, distinct tissue stiff-
ness, and contractile properties with the presence of
ECM.

Immune cells
Cardiac injury is accompanied by activation of immune
response and robust infiltration of immune cells, which
are essential for both acute cardiac wound healing and
heart regeneration. We focus on the different functions
of two types of immune cells, macrophages and regula-
tory T-cells (Tregs), which mediate innate and adaptive
immune response, respectively. Macrophages: During
heart development, macrophages facilitate cardiac elec-
trical conduction (Hulsmans et al., 2017) and promote
coronary vasculature formation (Leid et al., 2016). After
cardiac injury, innate immunity mediated by tissue resi-
dent macrophages promotes angiogenesis and ECM re-
modeling to enhance regeneration (Vannella & Wynn,
2017; de Couto, 2019). In zebrafish (Lai et al., 2017),
axolotl (Godwin et al., 2017) or mouse (Aurora et al.,
2014) models, clodronate liposomes mediated macrophage
depletion consistently leads to compromised neovasculari-
zation and cardiomyocytes proliferation, suggesting a con-
served role of macrophages in regeneration across species.
Interestingly, medaka, another lower vertebrate teleost

which share similar cardiac structure and living environ-
ment with zebrafish, fail to regenerate injured hearts due to
delayed and reduced macrophage recruitment. Accordingly,
stimulating Toll-like receptor signaling in medaka pro-
motes heart regeneration (Lai et al., 2017). Furthermore, in
mammalian hearts, tissue resident macrophages are not
homogenous and can be further divided into two subpopu-
lations based on the expression of C-C chemokine receptor
2 (CCR2) (Epelman et al., 2014a; Epelman et al., 2014b).
CCR2− macrophages are derived from embryonic progeni-
tors and seed the heart during early fetal and perinatal
stages. In contrast, CCR2+ macrophages are derived from
definitive hematopoietic stem cells and are replaced slowly
by circulating monocytes (Epelman et al., 2014a). Recent
study further demonstrates CCR2− and CCR2+ macro-
phages play opposite roles in monocyte recruitment after
cardiac injury, and selectively depletion of these two subsets
results in divergent effects on heart remodeling (Bajpai
et al., 2019). In addition, the role for macrophages during
heart regeneration has been studied in the context of stem
cell therapy. Regional CCR2+ and C-X3-C motif chemokine
receptor 1 (CX3CR1+) macrophages accumulation alters
fibroblast activity, decreases ECM in wound border zone, as
well as improves mechanical properties of the heart (Vag-
nozzi et al., 2020). Tregs: As a key adaptive immune re-
sponse mediator, Tregs can directly promote zebrafish or
neonatal mouse heart regeneration. In zebrafish, forkhead
box P3a+ (foxp3a+) Tregs stimulate regeneration by produ-
cing Nrg1 to enhance cardiomyocytes proliferation. Conse-
quently, Tregs depleted hearts display regeneration defects
with deposition of fibrin and formation of collagenous scar
(Hui et al., 2017). In neonatal mouse, CD4+ Tregs depletion
through genetic ablation or the lytic anti-CD25 antibody
treatment results in reduced heart regeneration (Li et al.,
2019; Fung et al., 2020; Li et al., 2020). Moreover, Tregs de-
ficient NOD/SCID mouse display regeneration defects,
which can be rescued by adoptive transfer of Tregs (Li
et al., 2019). Mechanistically, Tregs potentiate neonatal car-
diomyocyte proliferation through secreted factors such as
chemokine ligand 24 (CCL24), growth arrest specific 6
(GAS6) and amphiregulin (AREG) (Li et al., 2019).

Concluding remarks and outlook
The utilization of various new genetic tools in the past
two decades has significantly advanced our understand-
ing of heart regeneration, especially on zebrafish and
mouse models. From acute wound healing responses to
long term cardiomyocyte proliferation, spatiotemporal
activation of multiple signaling pathways in different cell
types are required to reconstruct an injured heart. How-
ever, there are many important questions that remain to
be answered. What is the molecular mechanism that initi-
ates the cell cycle exit of mammalian cardiomyocytes after
birth? Which molecule triggers the initial regenerative
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responses? How to induce reprogramming and cell div-
ision of mature mammalian cardiomyocytes in vivo? The
answers to these or other related questions will help us to
understand the molecular and cellular mechanisms under-
lying heart regeneration in model organisms, and more
importantly, will set the stage for the development of
strategies to either promote the intrinsic proliferative po-
tential of cardiomyocytes, or optimize exogenous stem cell
based methods for cardiac diseases therapy.
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