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Abstract

Identifying genes that define cell identity is a requisite step for characterising cell types and cell states and
predicting cell fate choices. By far, the most widely used approach for this task is based on differential expression
(DE) of genes, whereby the shift of mean expression are used as the primary statistics for identifying gene
transcripts that are specific to cell types and states. While DE-based methods are useful for pinpointing genes that
discriminate cell types, their reliance on measuring difference in mean expression may not reflect the biological
attributes of cell identity genes. Here, we highlight the quest for non-DE methods and provide an overview of
these methods and their applications to identify genes that define cell identity and functionality.

Main text
Defining the identity of a cell is fundamental to cell
biology research (Kotliar et al. 2019; Morris 2019;
Wagner et al. 2016; Weinreb et al. 2020). Traditionally,
histological and morphological assessment of cells, overlaid
with immunohistochemical information, has enabled us to
identify cell types with confidence. Bulk RNA-sequencing
(RNA-seq) preceded by FACS sorting has further unveiled
the global molecular characteristics of cell populations of
interest. However, these approaches have been restricted to
cell types with known marker genes and the bulk measure-
ment have masked the underlying cellular heterogeneity.
Recent technological advances in genome-wide profiling of
single cells have enabled the unbiased exploration of cell
identity, allowing discovery of known and unknown cell
types at single-cell resolution. Yet inferring the identity of
cells has become a renewed challenge as the expanding
breadth and depth of single-cell omics data now provide an

unprecedented lens into the complexities and nuances of
cellular identities.
For some cell types, the computational task to infer

cell identity on the basis of omics profiles alone may be
relatively straightforward, requiring the evaluation of the
expression of known marker genes. For rare or previously
unknown cell types, defining the gene set that uniquely
identifies the cell is a challenge in the absence of any prior
knowledge. This raises an important question of how we
could select genes that mark a cell’s identity, henceforth
referred to as cell identity genes (CIGs).
Many methods have been devised to identify CIGs,

among which the most popular approach is based on
differential expression (DE) of genes. A host of tools
have been developed for DE analysis on bulk RNA-seq
data, such as DESeq2 (Love et al. 2014), edgeR (Robin-
son et al. 2009), and Limma (Ritchie et al. 2015), and
many of them have been successfully applied on single-
cell data. Recent methods designed for mining single-
cell gene expression data (Delmans and Hemberg 2016;
Finak et al. 2015; Kharchenko et al. 2014; Pierson and
Yau 2015; Qiu et al. 2017; Vallejos et al. 2015) address
some confounding aspects of the analysis of scRNA-seq
data, such as technical noise arising from variation in
cellular detection rate, and attempt to capture more
nuanced differences in cell-to-cell heterogeneity. However,
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whether these approaches faithfully capture CIGs remains
unknown.
A common feature among most current DE methods

is their reliance on a specific model of gene expression,
which overlooks the heterogeneous nature of gene
expression between cells and limits the discovery of
CIGs by placing restrictions on the distribution of the
genes selected. t-test based approaches (such as Limma)
and MAST (Finak et al. 2015) assume a Gaussian distribu-
tion of gene expression; BASiCS, a Poisson distribution
(Vallejos et al. 2015); and SCDE, a Poisson and negative
binomial distribution (Kharchenko et al. 2014). As an
illustration of the potential caveat, DE methods that are
based on the Student’s t-test such as Limma (Ritchie et al.
2015) is that they prioritise genes that are stably expressed
(i.e., conforms to a Gaussian distribution) in both the cell
type of interest and other cell types as long as there are
shifts in the mean expression. This means that any genes
that do not follow this distribution are penalised irrespect-
ive of whether the gene may be critical to the identity of
the cell or not, meaning that many marker genes identified
by DE methods are simply more highly expressed in the
cell type of interest than the rest.
Recently, methods based on new statistical metrics

have been developed. These methods break away from
detecting genes on the basis of shifts in means and

attempt to capture more subtle differences in gene
expression. For example, scDD is a blanket approach
that detects differential proportion (DP), differential
modes (DM), and bimodal distribution (BD), as well as
DE (Korthauer et al. 2015). Non-parametric approaches
are rarer, with model-free methods developed to find
differential genes (Li and Tibshirani 2013; Tiberi et al.
2020). These metrics prioritise genes that are differen-
tially distributed (DD) as opposed to those that are
differentially expressed (Fig. 1). Whilst these methods
are yet to be vetted in terms of their fidelity to prioritize
genes that are robust in defining cell identities, they
present new avenues for researchers go beyond finding
genes that are most distinctively expressed in cells to
those that may be more relevant to the identity of the
cell and its phenotype.
A biological read-out that accurately captures cellular

attributes would not only enhance our ability to assign
cellular identities but also opens up a plethora of possi-
bilities to investigate complex systems where assigning
cellular identities is inherently more challenging. First,
the availability of a comprehensive set of cell identity
read-outs encompassing a wide range of cell types would
enable a data-driven approach to accurately predict and
quantitatively investigate new cell types. This kind of
computational approach would not be limited to analysing

Fig. 1 Schematic illustrating the expression of differentially distributed genes for a cell type of interest from single-cell RNA-seq data (scRNA-seq). The
hypothetical scRNA-seq data consists of three cell types, which can be visualised as distinct clusters in the low dimensional space (left). Typical expression
pattern of genes identified from using two differential analysis methods: differential distribution (top) and traditional differential expression (bottom)
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new cell types but may be used to analyse how cell states
are affected with disease or perturbations, capturing the
nuance changes in the omics that would affect the overall
phenotype of the cell. Second, assignment of cell identities
of discrete cellular states, whilst of great importance,
provides only a partial answer towards the greater goal of
mapping all cellular states. Cells dynamically transition
between discrete cell states or cell types, and this develop-
mental landscape, as depicted in the Waddington’s model,
illustrates the spectrum of states in which a cell may lie.
Identifying the CIGs that define these transitional cell
states will help us perform a much deeper analysis of cell
identity characterisation and lineage differentiation.
In conclusion, with rapidly advancing single-cell tech-

nologies, the development of new computational methods
that faithfully capture CIGs that are most relevant to the
identity of cells is critical to advancing our knowledge of
cellular identity. The selection of CIGs has major implica-
tions on a range of downstream single-cell computational
applications, and oftentimes the biological interpretation
hinges on the outcome of these downstream analyses. We
aspire that enhancing our ability to identify CIGs will con-
tribute towards and invigorate new research in elucidating
the factors of cell identity and realising the potential of
single-cell analytics technologies to pinpoint functional
attributes that are relevant to the cellular phenotype.

Abbreviations
scRNA-seq: Single-cell RNA sequencing; CIG: Cell identity gene;
DD: Differential distribution; DE: Differential expression; DP: Differential
proportion; DM: Differential modality
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