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Abstract

Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated
contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes
undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these
processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity
phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the
PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart
function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis
following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial
therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation
and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.
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Background
Cardiovascular diseases are the leading cause of mortal-
ities and affects more than 26 million people (Roth et al.
2017; Bui et al. 2011). Myocardial injury causes enor-
mous amount of cardiomyocytes loss, resulting in com-
promised cardiac contraction and pathological cardiac
dilatation, accompanied with cardiac compensatory
hypertrophic and fibrotic remodeling in hearts. Due to
the limited proliferation capacity of mature cardiomyo-
cytes, the damaged heart hardly gets regeneration and
enough repair. Despite the significant progress in clinical
treatment of cardiac diseases, morbidity and mortality
rates remain high (Roth et al. 2017). An alternative strat-
egy for treatment of cardiac diseases is promoting car-
diac endogenous repair by regulating cardiomyocytes

proliferation and cellular biological processes in regener-
ation, which rely on essential signal pathway cascades.
PTEN (phosphatase and tensin homolog), also known

as MMAC1 (mutated in multiple advanced cancers) or
TEP1(TGFb-regulated and epithelial cell-enriched phos-
phatase), was first identified as a tumor suppressor gene
in 1997 by three independent groups through mapping
human homozygous deletion on chromosome 10q23 (Li
et al. 1997; Steck et al. 1997; Li and Sun 1997). PTEN
mutation occurs frequently in multiple human advanced
cancers, such as brain, breast, prostate cancer and glio-
blastomas (Li et al. 1997; Steck et al. 1997; Li and Sun
1997). PTEN acts as a dual-specificity phosphatase that
dephosphorylates lipids and proteins on serine, threo-
nine and tyrosine residues (Myers et al. 1997). Overex-
pression of PTEN inhibits tumor growth and cell
migration by reducing the tyroshine phosphorylation of
focal adhesion kinase FAK (Tamura et al. 1998). To
evaluate the roles of PTEN in oncogenesis in vivo, re-
searchers generated conventional Pten knockout mouse
in 1998 by removing exons 4 to 5, or exons 3 to 5 of the
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Pten gene in ES cells (Di Cristofano et al. 1998; Suzuki
et al. 1998; Stambolic et al. 1998). Pten ablation resulted
in early embryonic lethality, implying that PTEN is an
essential factor in embryonic development (Di Cristo-
fano et al. 1998; Suzuki et al. 1998). In addition, PTEN
negatively regulates cellular phosphatidylinositol(3,4,5)
trisphosphate (Ptdlns(3,4,5)-P3) and dephosphorylates it,
which is an activator of 3-phosphoinostide-dependent
kinease (PDK) and AKT. Thus, PTEN functions as a
tumor suppressor by negatively regulating PI3K/AKT
signaling pathway (Stambolic et al. 1998). The crystal
structure of human PTEN revealed the overall structure
of PTEN and the binding site of PTEN with Ptdlns(3,4,
5)-P3, which provides further evidence for the above
conclusion (Lee et al. 1999).
In the past two decades, researchers have unveiled

the crucial role of PTEN in development, tumorigen-
esis, as well as in heart growth. As a ubiquitous
gene, Pten is widely expressed in many tissues and
cells including the heart and cardiomyocytes. Using
a muscle-specific Pten knockout mouse model, Josef
M. Penninger group found PTEN inactivation pro-
motes heart hypertrophy and decreases cardiomyo-
cyte contractility (Crackower et al. 2002), indicating
PTEN plays a fundamental role in cardiac physi-
ology. Noticeably, under pathological stimuli, loss of
PTEN results in marked and persistent protection
against aortic banding-induced stress (Oudit et al.
2008). Since PTEN negatively regulates PI3K/AKT
while activation of Akt protects cardiomyocytes from
apoptosis and heart function from cardiac injury
(Fujio et al. 2000), inactivation of PTEN emerged as
a potential therapeutic method against cardiac dis-
eases, especially ischemic cardiac stress (Oudit et al.
2008; Ruan et al. 2009). Actually, the roles and
underlying mechanisms of PTEN in regulation of
cardiac physiological and pathological processes,
have attracted much attention in heart research over
years.
In this review, we use the word ‘PTEN-less’ to refer to

PTEN loss or inactivation (Stiles et al. 2004), and we
summarize the roles of PTEN-less in common basic bio-
logical processes of cardiomyoccytes in diseased heart,
such as hypertrophy, proliferation, apoptosis and sur-
vival. We anticipate to increase understanding of the
function and mechanism of PTEN-less in cardiomycytes
fate, and to promote the gene therapy development in
heart regeneration field.

Approaches to PTEN inactivation
Regulation of PTEN expression and PTEN activity is
achieved through various methods, including gen-
etic, post-transcriptional and post-translational
mechanisms.

Genetic regulation
The first transgenic mouse harboring loss-of-function
mutation in Pten gene was generated in 1998 by re-
placing exons 4 and 5 of Pten gene with the neomycin-
resistance gene (neo) cassette, resulting in a functionally
inactive Pten allele (Di Cristofano et al. 1998). Around
the same time, another research group also created a
similar Pten mutant mouse line. They generated Pten−/−

mice through targeted deletion of exons 3 to 5 of Pten
gene (Suzuki et al. 1998). These two lines of conven-
tional Pten−/− mice lead to early embryonic lethality, in-
dicating that conditional Pten knockout mice are needed
for deeper mechanistic studies.
Mice with conditional mutagenesis of Pten gene were

first generated in 2001 by two groups. Suzuki et al. used
the Cre-loxP system (expressing Cre recombinase under
control of the Lck promoter) to generate a T cell-specific
deletion of the Pten gene by targeting exons 4 and 5.
Mice with heterozygous deletions of Pten were born
alive and appeared healthy (Suzuki et al. 2001). Based on
this floxed Pten mice, conditional Pten knockout mice
were generated using different tissue specific Cre, such
as Gfap-Cre (brain) (Backman et al. 2001), Mck-Cre
(heart and skeletal muscle) (Crackower et al. 2002), Alb-
Cre (hepatocyte) (Horie et al. 2004) and Nse-Cre (neu-
rons) (Kwon et al. 2006). Another different line of Pten
floxed mouse was generated nearly at the same time.
LoxP sequences were inserted into the endogenous Pten
locus flanking exon 5, which encodes the phosphatase
domain and accounts for many tumor-associated muta-
tions. Ptenflox/flox mice can be born with normal PTEN
expression levels (Lesche et al. 2002; Groszer et al.
2001). To verify Cre recombinase-induced deletion of
Pten exon 5, they crossed Pten-floxed females with males
carrying a nestin promoter-driven Cre transgene which
is activated in central nervous system stem/progenitor
cells at embryonic day (E) 9 or 10. There are no PTEN
expresision in whole brain lysates from newborn Pten
mutant mice (Groszer et al. 2001). This Pten floxed
mouse line was also widely applied in the heart. Ruan
et al. established a mouse genetic model of cardiomyo-
cyte specific and tamoxifen inducible ablation of Pten to
investigate the functional role of PTEN in response to is-
chemia/reperfusion (Ruan et al. 2009). Liang et al. used
tamoxifen inducible cardiomyocyte specific Pten knock-
out mice to investigate the role of Pten in cardiac regen-
eration after myocardial infarction (Liang et al. 2020).
Liu et al. used AAV-Cre to induce Pten deletion, and
found that deletion of Pten enhanced compensatory
sprouting of uninjured corticospinal tract axons and en-
abled regeneration of a cohort of injured corticospinal
tract axons past a spinal cord lesion (Liu et al. 2010).
The summary of Pten knockout mice is listed in

Table 1.
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Table 1 Pten knockout mice

Conventional Knockout

Pten Exons Target cells Effect Years Ref.

Exons 3–5 ES cells Embryonic lethality 1998 (Suzuki et al. 1998)

Exons 4–5 ES cells Embryonic lethality 1998 (Di Cristofano et al.
1998)

Conditional Knockout

Floxed Exons Tissue specific deletion

Pten
Exons

Ref. Cre Target cells Effect Years Ref.

Exons
4–5

(Suzuki et al.
2001)

Lck-Cre T cells Pten knockout T cells are autoreactive, hyperproliferate,
resist apoptosis and secreate high level Th1/Th2
cytokines, show increased p-PKB/Akt and p-ERK

2001 (Suzuki
et al. 2001)

Exons
4–5

Gfap-Cre Brain glial cells Mice showed enlarged brain and developed seizures
and ataxia by 9 weeks and died by 29 weeks, Pten
mutant cells shoewed an increased soma size and
elevated p-Akt

2001 (Backman
et al. 2001)

Exons
4–5

Mck-Cre Skeletal and cardiac
muscle

Knockou Pten induced heart hypertrophy without
pathlogical change and decreaed heart contractility
through mediating PI3Kγ

2002 (Crackower
et al. 2002)

Exons
4–5

Alb-Cre Hepatocyte Mice showed massive hepatomegaly and steatohepatitis
with triglyceride accumulation, hepatocytes showed
hyperproliferation and abnormal activation of protein
kinase B and MAPK

2004 (Horie et al.
2004)

Exons
4–5

Nse-Cre Differentiated neurons
in the cerebral cortex
and hippocampus

Mice showed abnormal social interaction and
exaggerated responses to sensory stimuli, with
activation of the Akt/ mTor/S6k pathway and
inactivation of Gsk3β

2006 (Kwon et al.
2006)

Exons
4–5

Mck-Cre Skeletal and cardiac
muscle

Mice showed reduced pathological hypertrophy, less
interstitial fibrosis, reduced apoptosis and marked
preservation of LV function in aortic banding induced
pressure overload model, and markedly reduced p-JNK1,
p-JNK2 and p-p38

2008 (Oudit et al.
2008)

Exons
4–5

SM22α-Cre Smooth muscle cells Mice shopwed widespread medial SMC hyperplasia,
vascular remodeling, and histopathology consistent with
pulmonary hypertension

2008 (Nemenoff
et al. 2008)

Exons
4–5

PdgfbiCreERT2 (Cre
induced by
tamoxifen)

Endothelial cell Endothelial deletion of PTEN results in vascular
hyperplasia because cannot regulate Notch-induced
proliferation arrest. Both the catalytic and non-catalytic
APC/C-Fzr1/Cdh1-mediated activities of PTEN are re-
quired for stalk cells’ proliferative arrest

2015 (Serra et al.
2015)

Exon
5

(Lesche et al.
2002; Groszer
et al. 2001)

Nestin-Cre Central nervous system
stem/progenitor cells

Mice deletion PTEN showed enlarged and abnormal
brains, with increased cell proliferation, decreased cell
death, and enlarged cell size

2001 (Groszer
et al. 2001)

Exon
5

ARR2Probasin-Cre Prostatic epithelial cells Pten deletion successfully induced murine prostate
cancer model

2003 (Wang
et al. 2003)

Exon
5

Mx-1-Cre (Cre
induced by
polyinosine-
polycytidine)

Bone marrow
Haematopoietic stem
cells (HSCs)

The ability of sustain haematopoietic reconstitution
affected in Pten-deicient HSCs, mice with Pten deletion
showed an increased representation of myeloid and T-
lymphoid lineages and develop myeloproliferative
disorder

2006 (Zhang
et al. 2006)

Exon
5

Gdf-9-Cre Oocytes Lacking PTEN in oocytes activated the entire primordial
folliclepool and caused premature ovarian failure

2008 (Reddy
et al. 2008)

Exon
5

α-MHC-MerCreMer
(Cre induced by
tamoxifen)

Cardiomyocytes PtenCKO hearts exhibited increased PI3K activity in
baseline,and better function recovery after ischemia/
reperfusion,with fewer apoptosis and higher level of ERK
and BCL-2 expression

2009 (Ruan et al.
2009)

Exon
5

AAV- Cre Corticospinal neurons Deletion PTEN enhanced compensatory sprouting of of
uninjured corticospinal tract axons and enabled
regeneration of a cohort of injured corticospinal tract

2010 (Liu et al.
2010)
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Post-transcriptional regulation
MicroRNA is a commonly used strategy for post-
transcriptional regulation. Due to relatively long 3′ un-
translated region (UTR) sequence, Pten mRNA can be
easily targeted by many microRNAs, such as microRNA-
19a, microRNA-19b (Chen et al. 2013) and microRNA-
301a (Zhen et al. 2020), resulting in downregulated ex-
pression level. Therefore, post-transcriptional regulation
of PTEN expression by noncoding RNAs, especially,
microRNAs, is frequently involved in modulation of
pathophysiological processes during development,
homeostasis, and disease.

Post-translational regulation
For post-translational regulation, small molecule inhibi-
tors are generally and widely applied in translational
therapy. Protective effects of the PTEN inhibitor on car-
diac functions were first reported in 2010, when re-
searchers showed that suppression of PTEN by
bisperoxovanadium molecules [BpV (HOpic)] decreased
mice myocardial infaction size and improved heart func-
tion post ischemia/reperfusion injury (Keyes et al. 2010).
In addition, Pdk1-deficient mice exhibited heart dilation
and failure, however, treatment with PTEN inhibitor
bpV (phen) prolonged mice survival by enhancing Akt
Ser473 phosphorylation (Zhao et al. 2014). Noticeably,
PTEN heterogeneity is carcinogenic and inhibition of
PTEN by pharmacological methods enhances tumor
growth (Xi and Chen 2017).
As PTEN is a member of the large family of cysteine-

based phosphatases (CBPs) that contains the protein
tyrosine phosphatase (PTPase) superfamily, some well-
established general PTPase inhibitors, such as vanadium
and peroxovanadium compounds, inhibit PTEN activity
and also inhibit a broad range of phosphatases (Huyer
et al. 1997; Posner et al. 1994). To design and synthesize
specific vanadium-based PTEN inhibitors, Rosivatz et al.
synthesized eight small recombinant vanadium com-
pounds, including VO-OHpic, bpV-OHpic, bpV-pic,
VO-pic, bpV-biguan, VO-biguan, bpV-phen, and bpV-
isoqu. These compounds are shown to bind to the active
site of PTEN but show little activity against other

PTPases (Rosivatz et al. 2006). After comparing these
eight compounds against enzyme activities of four other
recombinant CBPs (PTP-β, SAC1, MTM1 and SopB)
in vitro, they found VO-OHpic is the most potent and
specific inhibitor for PTEN, whereas the other vanadium
compounds possess broader specificity (Rosivatz et al.
2006). In addition, SF1670, a phenanthrenedione-related
compound, is also used as a relatively specific PTEN in-
hibitor. Pretreated with SF1670 in neutrophils enhanced
the inflammatory response and the bacteria-killing cap-
ability in neutropenic recipient mice (Li et al. 2011). A
summary of the role of PTEN specific inhibitors in vari-
ous biological systems are shown in Table 2.

PTEN in cardiac hypertrophic growth
Cardiac hypertrophy, a common pathophysiological
phenomenon, occurs during exercise, pregnancy, and in
many cardiac diseases, such as hypertension, ischemic
heart disease, valvular disease and heart failure (Naka-
mura and Sadoshima 2018; Frey et al. 2004). The heart
initiates proceeds hypertrophic growth in response to
hemodynamic overload to increase contractility and di-
minish ventricular wall stress. However, this adaptive
compensation eventually leads the hypertrophic heart
transition to heart failure through pathological remodel-
ing, characterized by an increased cardiomyocyte size
and enlarged heart volume (Nakamura and Sadoshima
2018; Frey et al. 2004). Cardiac hypertrophy is regulated
by multiple signaling pathways, including PI3K/AKT,
which play crucial roles in regulation of cell growth, cell
survival, and metabolism (Crackower et al. 2002; Oudit
et al. 2003). There are three classes (I-III) of PI3K. Pri-
marily, activated PI3K (Class I) phosphorylates
phosphatidylinositol-4,5-bisphosphate (PIP2) and con-
verts PIP2 to phosphatidylinositol-3,4,5-trisphosphate
(PIP3), and subsequently activates downstream Akt sig-
naling (Engelman et al. 2006). Class IA PI3K, consisting
of a regulatory subunit and a p110(α, β, δ) catalytic sub-
unit, are activated by growth factor receptor tyrosine ki-
nases. Class IB PI3K, consisting of a regulatory subunit
and a p110γ catalytic subunit, are activated by G-
protein-coupled receptors (Engelman et al. 2006).

Table 1 Pten knockout mice (Continued)

axons past a spinal cord lesion

Exon
5

Pax7CreER Quiescent satellite cells Quiescent satellite cells specific knockout Pten lead to
spontaneous activation and premature differentiation
and resulted in failed regeneration. Mechanistically, Pten
deletion increases Akt phosphorylation, further induced
FoxO1 cytoplasmic translocation and Notch signalling
suppression

2017 (Yue et al.
2017)

Exon
5

α-MHC-MerCreMer
(Cre induced by
tamoxifen)

Cardiomyocytes Cardiac-specific knockout Pten in adult mice preserved
heart function, decreased scar size and promoted
cariomyocytes proliferation after myocardial infarction
stress

2020 (Liang et al.
2020)
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Cardiac-specific expression of constitutively active class
IA PI3K(p110 α) increases the cardiomyocytes size, and
induces heart hypertrophy in mice. Consistently, expres-
sion of dominant negative PI3K(p110 α) reduces cell size
of cardiomyocytes with no appearance difference in
heart function (McMullen et al. 2003). However, loss of
class IB PI3K(p110 γ) improves the cardiac contractility
by elevating cAMP levels in mice (Crackower et al.
2002).
PTEN negatively regulates PI3K-AKT signaling by de-

phosphorylating PIP3, further affecting AKT phosphor-
ylation. Inactivation of PTEN between E6.5 to E9.5
resulted in embryonic lethality in mouse (Suzuki et al.

1998). As to PTEN’s role in heart development, Pennin-
ger group knocked out Pten in mouse muscles (Ptenflox/-
flox; Mck-Cre). They found heart size increased in the
knockout group in 10 weeks and 12 months. Moreover,
phosphorylations of GSK3β and p70S6K were increased
in the hypertrophic heart induced by Pten knockout
(Crackower et al. 2002). Thereafter, they used the same
genetic mouse model with aortic banding (AB) to mimic
hypertension-induced cardiac hypertrophy in humans.
The control group (Mck-Cre) exhibited a marked ven-
tricular dilation and loss of systolic function in heart
post 9- and 12- weeks aortic banding. Intriguingly, the
Pten knockout group (Ptenflox/flox; Mck-Cre) showed a

Table 2 PTEN specific inhibitors

Compound Dose Object Effect Years Ref.

SF1670 125-
500
nM

Human and mouse
neutrophils

Neutrophils treatment with PTEN specific inhibitor SF1670 elevated
Ptdlns(3,4,5)-P3 signaling, enhanced the innate immune responses. Mice
transfusion with SF1670-treated neutrophils led to augmented bacteria-
killing capacity in both peritonitis and bacterial pneumonia

2011 (Li et al.
2011)

SF1670 10uM Human colorectal cancer
(CRC) cell lines

Selenite could induce FoxO3a-mediated apoptosis in CRC cells through
PTEN-regulated AKT/FoxO3a/Bim signaling pathway, inhibition PTEN by
SF1670 abrogated the above changes

2013 (Luo et al.
2013)

SF1670 3 nM Neuronal progenitor striatal
cells (NPC) from mouse
striatum

Inactivation of PTEN in NPC with SF1670 enhanced the inhibition effect of
BDE-49 on mitochondrial respiratory chain electron transport

2013 (Napoli
et al.
2013)

SF1670 10uM Human pre-B acute lympho-
blastic leukemia (ALL)

Inhibition of PTEN with SF1670 in human pre-B ALL cells induced cell
death, with hyperactivation of AKT and activation of the p53 tumor sup-
pressor cell cycle checkpoint

2016 (Shojaee
et al.
2016)

VO-OHpic 500
nM

Human prostate cancer cell
lines

Inhibition PTEN with VO-OHpic induces senescence and inhibits tumori-
genesis in prostate cancer through enhance p53 translation

2010 (Alimonti
et al.
2010)

VO-OHpic 500
nM

Carcinoid cell line BON Inhibition of PTEN with VO-OHpic in BON cells result in decreased secre-
tion and synthesis of serotonin,with increased Akt signaling

2011 (Silva et al.
2011)

VO-OHpic 100
nM

Mouse adrenal chromaffin
cells

Abolished the effect of PI3Kδ inhibitor IC87114 on promoting potentiation
of Ca2+ − stimulated catecholamine release

2011 (Wen et al.
2011)

VO-OHpic 500
nM

Breast cancer cells Abolished the effect of PI3Kδ inhibitor IC87114 on AKT inhibition 2012 (Tzenaki
et al.
2012)

VO-OHpic 0.1-
5uM

Mouse ventricular
cardiomyocytes

Highly protective against cell death induced by ischemia and reperfusion 2014 (Zhu et al.
2014)

VO-OHpic 10 μg/
kg BW

Mice Induce cooling-like protection with improved recovery and survival in
mouse model of SCA

2015 (Li et al.
2015)

VO-OHpic 500
nM

Human hepatocellular
carcinoma cell lines

Inhibited cell growth and induced senescence in hepatocellular
carcinoma (HCC) cells

2016 (Augello
et al.
2016)

VO-OHpic 100uM Mice superior mesenteric
artery

Improved insulin-induced vasodilation in high fat diet-fed mice 2016 (da Costa
et al.
2016)

VO-OHpic 500
nM

Mouse OS tumor cells and
human OS cell line

Facilitate tumor growth and expansion in bone 2017 (Xi and
Chen
2017)

VO-OHpic 0.05/
2 μg/
ml

Rat cardiac myocytes Improves cardiac myocyte survival after ischemic reperfusion by
mediating apoptosis resistance in vitro

2018 (Zhang
et al.
2018)

VO-OHpic 10 μg/
kg BW

Mice Preserve heart function and promote cardiomyocytes proliferation after
myocardial infarction

2020 (Liang
et al.
2020)
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minimal ventricular hypertrophy and dilation, indicating
that loss of PTEN protected heart from AB injury (Oudit
et al. 2008). Recently, Liang et al. generated cardiac-
specific inducible Pten knockout mice and performed
acute myocardial infarction (MI) on the Pten-CKO mice
(Ptenflox/flox; αMHC-MCM) and control mice (Ptenflox/-
flox). Similarly, they found cardiac specific deletion of
Pten significantly decreased cardiomyocytes size at 12
weeks post MI, and consistently preserved heart function
from 2 weeks to 12 weeks post MI (Liang et al. 2020).
These studies indicate that loss of PTEN attenuates car-
diac hypertrophic growth in pathological remodeling
and protects heart function after cardiac stress such as
aortic banding and myocardial infarction.

PTEN in cardiomyocyte proliferation and cardiac
regeneration
Heart regeneration has attracted more and more atten-
tion of researchers since 1850s (King 1940; Carvalho and
de Carvalho 2010; Zheng et al. 2021; Cutie and Huang
2021). It is generally believed that lower vertebrates,
such as newt and zebrafish, have the ability to regener-
ation throughout life (Poss et al. 2002; Jopling et al.
2010; Kikuchi et al. 2010; Lepilina et al. 2006). However,
the mammalian hearts only have the regenerative ability
in embryo and early postnatal stage since the adult car-
diomyocytes are considered as terminally differentiated
and hardly divide (Kathiresan and Srivastava 2012; Mudd
and Kass 2008). After apical resection, the heart of post-
natal 1-day-old mice can regenerate with complete func-
tional recovery, but the mice lost the capability of such
spontaneous regeneration by 7 days of age (Porrello
et al. 2011). In adulthood, mature cardiomyocytes retain
limited regenerative capacity with about 1% measurable
turnover and increase such capacity by several fold in re-
sponse to injury (Bergmann et al. 2009; Bergmann et al.
2015; Senyo et al. 2013; Porrello et al. 2013). Using iso-
tope of nitrogen labeling and lineage tracing approach in
mouse model, researchers have concluded that the newly
generated cardiomyocytes arise from pre-existing cardio-
myocytes but not from nonmyocytes (Porrello et al.
2011; Senyo et al. 2013; Li et al. 2018a).
Cardiac diseases, like myocardial infarction, cause the

loss of a billion of cardiomyocytes during pathological
injury. The key to mend the damaged heart is to regen-
erate the cardiomyocytes. However, this regeneration
capacity of cardiomyocyte is too low to fully recover in
heart disease from a regenerative perspective. Finding
endogenous stimulation to boost cardiomyocytes prolif-
eration and heart regeneration is critical for treating
heart disease. Recently, scientists have discovered several
cellular factors regulating cardiomyocytes cell cycle.
They found that homeodomain transcription factor
Meis1, is required for transcriptional activation of the

synergistic CDK inhibitors p15, p16 and p21. Cardiac
specific knockout of Meis1 can promote cell cycle activ-
ity in young mouse hearts (Mahmoud et al. 2013). Con-
ditional double knockout of Meis1 and its co-factor
Hoxb13 have a significant increase in the number of
ventricular cardiomyocytes and have a gradual and sig-
nificant improvement in heart function after myocardial
infarction (Nguyen et al. 2020). Besides protein, noncod-
ing RNAs, especially microRNAs, often participate in
regulation of cardiomyocyte proliferation and cardiac re-
generation during cardiac homeostasis or after heart in-
jury. In an elegant study, Eulalio et al. performed high-
throughput functional screening in rodent cardiomyo-
cytes and they identified certain important microRNAs,
hsa-miR199a and hsa-miR590a can promote neonatal
cardiomyocyte proliferation, and stimulate adult cardio-
myocyte re-enter cell cycle and division (Eulalio et al.
2012). More importantly, the same group further dem-
onstrated that in large animal, AAV-mediated overex-
pression of miR-199a in porcine hearts significantly
stimulates cardiomyocytes proliferation and improves
heart function after injury from myocardial infarction
(Gabisonia et al. 2019).
For post-transcriptional regulation, Chen et al. have

demonstrated that miR-17-92 cluster is required for car-
diomyocyte proliferation in the mouse heart (Chen et al.
2013). Cardiac specific overexpression of miR-17-92 with
miR-17-92-KI mouse is sufficient to stimulate cardio-
myocyte proliferation in embryonic, postnatal and adult
hearts (Chen et al. 2013). The expression of PTEN is in-
versely correlated with the expression of miR-17–92,
which is decreased in the hearts of miR-17–92 cardiac
knock-in mice and increased in miR-17–92 cardiac
knockout mouse heart (Chen et al. 2013). Pten has benn
reported as a direct target of miR-19 family (miR-19a/
19b), which are the most potent members of the miR-
17-92 cluster (Olive et al. 2009). Overexpression miR-
19a/19b by intra-cardiac injection of miRNA mimics is
capable to stimulate cardiomyocytes proliferation and
repairs the adult heart after myocardial Infarction with
downregulated PTEN expression level (Gao et al. 2019),
whereas overexpression of PTEN reverses miR-19-
induced proliferation in cultured cardiomyocytes (Chen
et al. 2013). Interestingly, overexpression mir-17-3p (a
passenger miRNA of miR-17, which is a member of
miR-17-92 cluster) through tail vein injected miRNA
agomir also promotes cardiomyocytes proliferation and
decreases expression of PTEN indirectly in isolated neo-
natal rat cardiomyocytes (Shi et al. 2017).
MiR-301a is specially enriched in the neonatal cardio-

myocytes of rats and mice. Overexpression of miR-301a
in mice through tail vein injected AAV9 virus improves
heart function, promotes cardiac repair as well as myo-
cardium regeneration, and decreases cardiac fibrosis
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after myocardial infaction. Pten has been found to be a
target gene of miR-301a in cardiomyocytes. Down regu-
lation of Pten is accompanied with increased expression
of p-AKT and p-GSK3β in miR-301a treated mouse
heart, indicating PTEN/PI3K/AKT signaling pathway
mediates the cardiac regeneration induced by miR-301a
(Zhen et al. 2020).
In addition, a novel lncRNA AZIN2-sv (splice variant),

highly expressed in adult heart, negatively regulates en-
dogenous cardiomyocyte proliferation of SD rats in vivo
and in vitro. Knockdown of AZIN2-sv with shRNA
adenovirus attenuates ventricular remodeling and im-
proves cardiac function after myocardial infarction.
AZIN2-sv acts as a microRNA-214 sponge to release
Pten, which in turn blocks activation of the PI3K/Akt
signal pathway and inhibits cardiomyocyte proliferation
(Li et al. 2018b).
Although cardiomyocytes proliferation and regener-

ation regulated by noncoding RNAs appears to associate
with PTEN inhibition, the convincing evidence that
PTEN inactivation directly stimulates cardiomyocytes
proliferation is missing until recent report (Liang et al.
2020). Liang et al. generated cardiac-specific knockout of
Pten mice with a tamoxifen-inducible Cre-loxP system
(Pten-cKO) and subjected the mice to myocardial infarc-
tion injury to study the cardiac regeneration. Using
in vivo genetic approach, Liang et al. demonstrated that
cardiac knockout of Pten promotes cardiomyocytes pro-
liferation, reduces cardiac hypertrophy and infarcted
area, and improves heart function after myocardial in-
farction. The regenerative phenomena in heart of Pten-
cKO mice post injury was further confirmed when they
employed an independent lineage tracing strategy using
R26R-Confetti Cre-reporter system with loxP-flanked
multicolor fluorescent proteins (nuclear green fluores-
cent protein (nGFP), red fluorescent protein (RFP), yel-
low fluorescent protein (YFP) and monomeric cyan
fluorescent protein (mCFP)). A small number of cardio-
myocytes randomly express one of four fluorescent pro-
teins induced by low dose tamoxifen, the same color
adjacent cardiomyocytes are generated by cell prolifera-
tion most likely (Snippert et al. 2010; Wang et al. 2017).
More clinically relevant, they additionally demonstrated
that PTEN inhibitor, VO-OHpic at even very low dose,
also protects heart function and structure from myocar-
dial infarction injury and boosts cardiac regeneration
(Liang et al. 2020), which may be a therapeutic strategy
for ischemic heart disease.
In other organs, such as the central nervous system,

PTEN signaling has been shown to be involved in cell
regeneration. The ability of regeneration in injured
axons declines with age. The biggest challenge in the
adult central nervous system is adult axons lose the abil-
ity to regeneration and often need to travel long

distances to reconnect with their targets (Schwab and
Bartholdi 1996). Mammalian target of rapamycin
(mTOR) pathway is suppressed in adult central nervous
system, reactivating the mTOR pathway by silencing
PTEN in adult retinal ganglion cells can induce exten-
sive axon regeneration (Park et al. 2008). The regrowth
ability of corticospinal tract (CST) axons lost after devel-
opment for the low mTOR activity in mature corticosp-
inal neurons. Conditional knockout of Pten with injected
AAV-Cre into the corticospinal neurons of Ptenflox/flox

mice sustains a high level of mTOR activity, and induces
regeneration of a cohort of injuryed CST axons past a
spinal cord lesion. The regenerating CST axons from
Pten deletion seems to have the capability of reforming
synapses in caudal segments (Liu et al. 2010). In
addition, deletion of the suppressor of cytokine signaling
3 (SOCS3) in adult retinal ganglion cells (RGCs) elicited
a robust regeneration of injured optic nerve axons
(Smith et al. 2009). However, this two strategy could
only maintain regeneration capacity for two weeks after
optic nerve injury. For long term stimulation, re-
searchers simultaneously deleted both PTEN and
SOCS3, and found co-deletion of PTEN and SOCS3
triggered robust and sustained axon regeneration
through regulating activation of mTOR and STAT3
pathway (Sun et al. 2011). Mechanistically, alpha-retinal
ganglion cells (aRGCs) accounts for the regeneration fol-
lowing down-regulation of PTEN with high level of
mTOR activity. The aRGCs selectively express osteopon-
tin (OPN) and receptors for the insulin-like growth fac-
tor 1 (IGF-1). Administration of OPN and IGF-1 induce
regeneration similar as PTEN deletion (Duan et al.
2015).

PTEN in cardiomyocyte apoptosis and survival
In addition to cardiac regeneration, preventing cardio-
myocytes apoptosis and promoting their survival are
very important for heart repair after myocardial injury in
diseases. Loss of PTEN suppresses cell apoptosis and
promotes cell survival through activating the PI3K/AKT
signaling pathway (Mocanu and Yellon 2007; Wu et al.
2006). PI3K/AKT signal pathway is the main pro-
survival pathway, activation of the PI3K/AKT pathway
protects the heart from ischemia-reperfusion injury (Cai
and Semenza 2005; Hausenloy and Yellon 2004; Rossello
et al. 2018). Given the negative correlation between
PTEN and PI3K/AKT signaling pathway, loss of PTEN
becomes a potential therapeutic target for increasing
myocardial survival against cardiac stress injury (Oudit
et al. 2004).
Through transgenic mice, it was found that cardiac-

specific knockout of Pten protects heart from ischemia/
reperfusion injury by enhancing the expression of anti-
apoptotic gene Bcl-2 and pro-survival signaling ERK
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(Ruan et al. 2009). Transgenic hearts with cardiac-
specific overexpression of miR-494 displays better func-
tional recovery under ischemia/reperfusion injury. In
addition, overexpression miR-494 in cultured adult car-
diomyocytes reduces caspase-3 activity. The miR-494
target genes ROCK1, PTEN, CAMKIIδ, FGFR2, and LIF
are involved in regulating the p-Akt mediated apoptosis
signaling (Wang et al. 2010).
Furthermore, intra-myocardially injected miR-19a/19b

mimics in myocardial infaction mice preserves heart
function, decreases PTEN expression and inhibits apop-
tosis with reduced TUNEL and cleaved caspase 3 levels
(Gao et al. 2019). Overexpression of miR-130a through
injecting lentivirus into mice myocardium protects heart
from myocardial infarction injury and decreases PTEN
expression levels, but whithout affecting apoptosis (Lu
et al. 2015). From in vitro studies, transfection of miR-
19a mimic inhibites PTEN expression, increases p-Akt
levels, attenuates H9C2 cardiomyocytes apoptosis and
decreases LDH release under hypoxia/reoxygenation(H/
R) (Sun et al. 2017). Overexpression of miR-19b using
mimic in H9C2 cells decreases PTEN expression, im-
proves cell survival and decreases apoptosis induced by
H2O2 (Xu et al. 2016). MiR-885 mediates cardio-
protection against hypoxia/reoxygenation-induced apop-
tosis, and reduces the levels of cleaved caspase-3 and -9
proteins in human cardiomyocytes via inhibiting PTEN

and BCL2L11 by modulating AKT/mTOR signaling
(Meng et al. 2020).
From a post-translational regulation view, inhibiton of

PTEN by a specific inhibitor, VO-OHpic, protects heart
tissue by apoptosis resistance after ischemic stress, re-
covers the heart function, and decreases myocardial in-
farcted size after ischemia reperfusion (Zhang et al.
2018; Zu et al. 2011). Administration of another PTEN
inhibitor bisperoxovanadium (BpV) in rat cardiomyo-
cytes subjected to ischemia/reperfusion protects them
from simulated ischemia/reperfusion injury through up-
regulating the PI3K/AKT/eNOS/ERK pro-survival path-
way (Keyes et al. 2010).
From bench to bedside, a novel clinical combination

drug, Sacubitril/Valsartan (Brand name Entresto®), has
been proved superiority over conventional heart failure
medical treatments in reducing cardiomyocyte cell
death, hypertrophy, and improving myocyte contractility
by inhibiting PTEN (Iborra-Egea et al. 2017). Addition-
ally, the traditional Chinese medicine Baicalein, confers
optimal cardiac protection effects against ischemia/re-
perfusion injury, and this protection also involves the ac-
tivation of the PTEN/AKT/NO pathway (Li et al. 2017).

Conclusion and perspectives
PTEN is a tumor suppressor with highly evolutionary
conservation from mouse to human. Researchers from

Fig. 1 Biological processes regulated by PTEN after cardiac stress. A. Knockout of Pten with Mck-Cre induces heart hypertrophy in baseline
conditions and results in reduced pathological hypertrophy in hearts subjected to aortic banding. B. miR-19a/19b, miR-17-3p, miR-301a, promote
cardiomyocytes proliferation after ischemic stress; Cardiac specific knockout Pten induces cardiomyocytes proliferation after myocardial infarction;
PTEN specific inhibitor VO-OHpic boosts cardiomyocytes proliferation after myocardial infarction. C. Cardiac inducible knockout of Pten in mice
inhibits apoptosis signaling after ischemia/ reperfusion; miR-19a/19b, miR-494, miR-885, VO-OHpic and BpV reduces cardiomyocytes apoptosis
after cardiac stress by targeting PTEN. KO, knockout; AB, aortic banding; CMs, cardiomyocytes; VO-OHpic, PTEN specific inhibitor;
I/R, ischemia/reperfusion
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the past two decades unveiled the critical role of PTEN-
less in development, tumorigenesis, as well as in cardiac
development and disease (Di Cristofano et al. 1998;
Ruan et al. 2009; Stiles et al. 2004). In this review, we
summarize the strategy of PTEN-less in genetic, post-
transcriptional and post-translational level. Moreover,
we shed light on the impact of PTEN-less in patho-
physiological processes of heart in response to cardiac
injury and outline the favorable role of PTEN-less for
cardiac hypertrophy, regeneration, suvival and protection
heart from cardiac stress (Fig. 1).
These studies highlight the notion that PTEN-less

could be a potential therapeutic strategy for heart dis-
eases, and further extend the view of cardiac regenera-
tive medicine. Although these direct and indirect
evidence indicate that PTEN-less protects heart function
and enhances cardiomyocytes proliferation and regener-
ation after myocardial infarction injury, the underlying
molecular mechanisms need to be further clearly delin-
eated. More importantly, for ultimate clinical therapeu-
tics, boosting cardiomyocyte proliferation and
regenerating the human heart are a commendable goal,
despite barely understanding of the complex process of
heart regeneration for now. With development of new
strategy and advanced technology, such as a high–spa-
tiotemporal resolution examination system for genetic
lineage tracing of cell proliferation (He et al. 2021),
three-dimensional organoids culture skills (Li et al.
2020), single-cell analysis of cell population, combined
with gene therapy and small molecule drugs, we would
positively be seeing more feasible approaches explored
and exploited for regenerative medicine, leading to treat-
ment and prevention of heart disease.
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