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Abstract 

Pig and monkey are widely used models for exploration of human diseases and evaluation of drug efficiency and tox‑
icity, but high cost limits their uses. Organoids have been shown to be promising models for drug test as they reason‑
ably preserve tissue structure and functions. However, colonic organoids of pig and monkey are not yet established. 
Here, we report a culture medium to support the growth of porcine and monkey colonic organoids. Wnt signaling 
and PGE2 are important for long‑term expansion of the organoids, and their withdrawal results in lineage differentia‑
tion to mature cells. Furthermore, we observe that porcine colonic organoids are closer to human colonic organoids 
in terms of drug toxicity response. Successful establishment of porcine and monkey colonic organoids would facilitate 
the mechanistic investigation of the homeostatic regulation of the intestine of these animals and is useful for drug 
development and toxicity studies.
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Background
Rodents, especially mice, have been widely used in bio-
medical research. However, mice do not exhibit the 
similar pathological features of human gastrointesti-
nal disease. For instance, Adenomatous polyposis coli 
(APC)  mutation-associated polyps are usually found in 
the colorectum in human, while APC-induced polyp for-
mation occurs preferably in the small intestine in mice 
(Boivin et  al. 2003; Flisikowska et  al. 2012; Moser et  al. 
1990). Pig and cynomolgus monkey are regarded as ideal 
animal models to investigate the human gastrointestinal 
function and disease based on the similarity of genomic 
sequence, anatomic morphology and drug metabolism 
with human beings (Bray et  al. 2018; Cibelli et  al. 2013; 
Deglaire and Moughan 2012; Kararli 1995; Patterson et al. 
2008; Ziegler et  al. 2016). Multiple gastrointestinal dis-
ease models are established in pigs, such as short-bowel 

syndrome (Pereira-Fantini et al. 2011; Vegge et al. 2013) 
and colorectal cancer (Flisikowska et  al. 2012). Accord-
ingly, pigs have been approved for pharmaceutical testing 
by United States Food and Drug Administration (Gonza-
lez et al. 2015).

In the last decade, organoids have been demonstrated 
to be a great model for disease study, drug test and regen-
eration medicine. Organoids derived from adult stem 
cells possess the capability to maintain self-renewal 
while being able to differentiate into functional cell types, 
mimic the three-dimension (3D) structures and retain 
the functions of the origin tissues (Schutgens and Clevers 
2020; Zhang et al. 2020). In 2009, Clevers and colleagues 
developed the first meaningful mouse intestinal orga-
noids embedded in Matrigel with the culture medium 
supplemented with epidermal growth factor (EGF), 
Noggin and R-spondin (Sato et  al. 2009). Subsequently, 
mouse colonic organoids and human intestinal organoids 
were also established successfully (Fujii et al. 2018; Jung 
et al. 2011; Sato et al. 2011). By far, canine, bovine, por-
cine, bat, feline, chicken intestinal organoids have been 
cultured successfully (Chandra et al. 2019; Derricott et al. 
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2019; Gonzalez et  al. 2013; Khalil et  al. 2016; Kramer 
et  al. 2020; Powell and Behnke 2017; Zhou et  al. 2020). 
However, in our best knowledge, the porcine and mon-
key colonic organoid models are not reported. Here, we 
report the establishment of the organoids derived from 
the colon of pig and monkey. Using these organoids, we 
carried out drug toxicity studies and found that porcine 
and human colonic organoids exhibited similar toxicity 
response. These organoid models provide a useful plat-
form to expand the species investigation and drug toxic-
ity studies.

Results
Establishment of porcine and monkey colonic organoids
Fresh crypts from adult porcine colon were harvested 
and embedded into Matrigel and cultured with expan-
sion medium (EM) based on previously reported human 
colonic organoid medium (Jung et al. 2011). The sphere 
organoids were observed without budding structures 
after 1  week (Fig.  1A), and these organoids were main-
tained for at least 16 passages about 3 months. The size 
of porcine colonic organoids (PCOs) was increased 
after several passages, indicating fast proliferation in 

Fig. 1 Establishment of porcine and monkey colonic organoids. A, D Representative images of organoid growth of porcine colon (A) and monkey 
colon (D) in expansion medium from different passages. B, E Quantitation of the size of porcine colonic organoids (PCOs) (B) and monkey colonic 
organoids (MCOs) (E) in different passages. C, F Expression of cell marker genes was examined with q‑PCR in primary colon tissue and organoids 
from different passages in pig (C) and monkey (F). Scale bars, 100 μm. *p < 0.05, ** p < 0.01, ***p < 0.001. Data are displayed as the mean ± SD by 
one‑way ANOVA (B and E) and Student’s t‑test (C and F). 30 organoids were calculated for the size in B and E. Three independent experiments were 
performed in C and F 
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EM (Fig.  1B). The expression of trans-amplifying (TA) 
cell markers was similar between PCOs and the colon 
tissue. Meanwhile, the expression of stem cell marker 
genes (especially for Ascl2 and Smoc2) was significantly 
increased in PCOs compared to colon tissue, indicating 
the enrichment of stem cells in PCOs (Fig. 1C) (Munoz 
et  al. 2012; van der Flier et  al. 2009). The marker genes 
of mature cell types including enterocytes (marked by 
Fabp1), goblet cells (marked by Muc2 and Tff3), enter-
oendocrine cells (EECs) (marked by Chga and Chgb) had 
decreased expression in early passages of PCOs com-
pared to the colon tissue, and their expression recovered 
(especially for EEC marker genes) in late passages of 
PCOs except Muc2 (Fig. 1C). Vil1 (villin1) mainly marks 
enterocytes, but is also expressed in other immature epi-
thelial cells in the intestine (el Marjou et  al. 2004). The 
expression of Vil1 was obviously increased in PCOs, con-
firming the epithelial identity of PCOs.

The similar culture procedure was conducted to cul-
ture organoids from adult cynomolgus monkey colon. 
EM also supported the growth of monkey colonic orga-
noids (MCOs) (Fig. 1D), which could be maintained for 
at least 15 passages about 75 days. Fast proliferation was 
detected as the organoid size was significantly increased 
before passage 6, and then the organoid size was stable 
(Fig. 1E). The expression of the maker genes for various 
cell types was compared between MCOs and primary tis-
sues. The expression of enterocytes, goblet cells marker 
genes was significantly reduced in organoids compared 
to colon tissue, and EECs marker Chga and Chgb were 
rarely detected in the organoids (Fig.  1F). However, the 
stem cells and TA cells markers exhibited increased 
expression compared to primary monkey colon tissue. 
Together, EM could support porcine and monkey colonic 
organoid growth for long time and maintain the prolif-
eration ability.

Colonic organoids undergo differentiation 
in the differentiation medium
Both PCOs and MCOs were in a high proliferation state 
with less differentiated mature cell types in EM. The 
homostatic balance of proliferating vs. differentiation 
cells in the intestine epithelium tissue is achieved with 
combinatory effect of various niche factors (Zhang et al. 
2020; Zhu et  al. 2021). To recapitulate the physiologi-
cal cell constitution, we developed three differentiation 
media: (1) Differentiation-1 (D-1): withdrawal of Wnt3a-
conditional medium (Wnt3a-CM) and PGE2 from EM 
and the concentration of CHIR-99021 was decreased to 
2.5  μM; (2) D-2: withdrawal of Wnt3a-CM, PGE2 and 
CHIR-99021; (3) D-3: withdrawal of Wnt3a-CM, PGE2, 
CHIR-99021, nicotinamide and SB202190. Then PCOs 
grown in EM were transferred into these differentiation 

media. Solid or budding organoids were found in D-1, -2, 
-3 media at day 5 (Fig. 2A). However, organoids started to 
die in D-2 and -3 media in 1 to 2 weeks, while the orga-
noids in D-1 could be maintained for at least 3  weeks. 
Since Wnt signaling plays a critical role in intestinal stem 
cell self-renewal (Barker 2014; Qi and Chen 2015; Sato 
and Clevers 2013; Yin et al. 2014), reducing Wnt signaling 
in differentiation media would lead to decreased orga-
noid proliferation and cell death in long-term culture. 
Therefore, D-1 medium (DM) was used for the subse-
quent studies.

Compared to the PCOs growing in EM, morphologi-
cal changes were observed in DM from sphere to bud-
ding organoids (Fig.  2A-B). The expression of mature 
cell types markers (including Vil1, Fabp1 for enterocytes; 
Muc2, Tff3 for goblet cells; Chga, Chgb for EECs) was sig-
nificantly increased in DM compared to EM (Fig.  2C). 
However, Fabp1 and Muc2 expression remained low even 
in the PCOs cultured in DM compared to tissue, indi-
cating an incomplete differentiation process in PCOs. 
The expression of TA cell markers (Ki67 and Stmn1) 
was not changed or slightly increased, and the stem cell 
markers (Lgr5 and Smoc2) in EM returned to the levels 
close to ones in the tissue. Reducing Wnt signaling in 
DM could directly counts for the decreased Lgr5 expres-
sion in PCOs. To further verify mature cell types in the 
DM-cultured PCOs, immunofluorescence staining for 
enterocytes, EECs and goblet cells were performed. As 
shown in Fig.  2D,  Fabp1+ enterocytes were detected in 
the DM-cultured organoids, but were barely observed in 
the EM-culture organoids. Similarly,  ChgA+ EECs were 
significantly increased with DM culture (Fig.  2E). Fur-
thermore, more  Muc2+ goblet cells were observed in the 
DM-cultured organoids, as shown by immunofluores-
cence and Alcian blue staining (Fig.  2F-G). These data 
demonstrate that differentiation was promoted in DM-
cultured PCOs, which can better resemble the composi-
tion of the colonic epithelium.

To obtain more differentiated mature cells in MCOs, 
the organoids cultured in EM were transferred into 
DM for 1  week, and the size of sphere organoids was 
found to be smaller than the organoids in EM with the 
appearance of solid organoids (Fig. 3A-B). Accordingly, 
the expression of TA cells and stem cells markers was 
significantly decreased to the levels close to the tissue 
in DM-cultured MCOs, whereas some of differentiated 
cells markers Vil1 (enterocytes) and Tff3 (goblet cells) 
were upregulated compared to EM (Fig.  3C). Other 
differentiation markers were slightly increased in the 
DM-cultured MCOs compared to EM, but still lower 
than ones in the tissue, suggesting insufficient differen-
tiation process in MCOs. Immunofluorescence staining 
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further confirmed increased  Fabp1+ enterocytes and 
 Muc2+ goblet cells in the DM-cultured MCOs (Fig. 3D-
E). These results together indicate that this differ-
entiation medium promotes the differentiation of 
enterocytes and goblet cells, but not very effective on 
EECs differentiation, which may suggest the species dif-
ference in cell differentiation regulation.

Porcine colonic organoids are a promising model for drug 
sensitivity test
Organoids are powerful tools to investigate the drug 
metabolism and toxicity (Burtin et  al. 2020; Derricott 
et  al. 2019). Most drug toxicity studies in organoids 
are carried out with the ones derived from mouse 
and human (Morizane et  al. 2015; Park et  al. 2019). 
Here, we applied porcine, monkey and human colonic 

Fig. 2 Mature lineages of porcine colonic organoids are induced in differentiation medium. A Representative images of porcine colonic organoids 
grown in different differentiation media. Differentiation medium‑1 (D‑1): withdrawal of Wnt3a‑CM and PGE2 from expansion medium with 2.5 μM 
CHIR‑99021; Differentiation medium‑2 (D‑2): withdrawal of Wnt3a‑CM, PGE2 and CHIR‑99021 from expansion medium; Differentiation medium‑3 
(D‑3): withdrawal of Wnt3a‑CM, PGE2, CHIR‑99021, nicotinamide and SB202190 from expansion medium. B Representative bright‑field images and 
quantitation of the budding numbers of organoids in porcine colonic organoids cultured in expansion or differentiation medium for 7 days. White 
box depicts higher magnification below. C Expression of cell marker genes in proliferating (EM), differentiated (DM) porcine colonic organoids 
(passage 15) and tissue. D‑G Fabp1 staining (D), ChgA staining (E), Alcian blue staining (F), Muc2 staining (G) in porcine colonic organoids cultured 
in expansion or differentiation medium for 7 days. Scale bars, 100 μm. *p < 0.05, ** p < 0.01, ***p < 0.001 analyzed by Student’s t‑test. Data are shown 
as mean ± SD (n = 3 independent experiments)



Page 5 of 10Li et al. Cell Regen           (2021) 10:32  

organoids to test the toxicity response of anti-cancer 
drugs. Three types of organoids were seeded into 96 
well plates in DM. Then, two clinically used anti-colon 
cancer drugs irinotecan (a DNA topoisomerase inhibi-
tor) and regorafenib (a multi-targeted receptor tyrosine 
kinase inhibitor) were separately added into the orga-
noids with various concentrations. After 4  days, the 
organoid growth and cell viability were examined. The 
organoid size and numbers were significantly reduced 
in porcine and human organoids treated with 1  μM 
irinotecan. Inhibition on cell viability of human and 

porcine organoids was apparent at 5  μM, and there 
were rare viable organoids in porcine and human orga-
noids treated with 50 μM irinotecan (Fig. 4A). However, 
monkey organoids showed the resistance to irinote-
can treatment: even in 50  μM irinotecan, about 40% 
of the monkey organoids still survived. Regorafenib 
caused 80% cell death in porcine organoids in 1  μM, 
while monkey organoids were also more resistant to 
regorafenib (Fig.  4B). These data indicate that PCOs 
are more sensitive to these drugs than MCOs, and are 
closer to human colonic organoids.

Fig. 3 Mature lineages of monkey colonic organoids are induced in differentiation medium. A, B Representative images (A) and quantitation of 
organoid size (B) of monkey colonic organoids cultivated in expansion or differentiation medium for 7 days. White box depicts higher magnification 
below. C Expression of cell marker genes in proliferating (EM), differentiated (DM) monkey colonic organoids (passage 15) and tissue. D, E Fabp1 
staining (D), Muc2 staining (E) of monkey colonic organoids cultured with expansion or differentiation medium for 7 days. Scale bars, 100 μm. 
*p < 0.05, ** p < 0.01, ***p < 0.001 analyzed by Student’s t‑test. Data are shown as mean ± SD (n = 3 independent experiments)
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To investigate the effect of culture conditions on drug 
sensitivity, we further compared the sensitivity of PCOs 
in EM or DM for 4  days to irinotecan or regorafenib. 
As shown in the following Fig. 4C and D, PCOs showed 
a similar toxicity response to irinotecan in two cul-
ture media. However, PCOs had different responses to 
regorafenib, and the differentiated PCOs were less sen-
sitive, suggesting that highly proliferating cells are more 
sensitive to some drugs.

Discussion
In this study, we have successfully established por-
cine and monkey colonic organoid culture, and these 
organoids possessed the in  vivo cell composition. Our 
results showed that reduced Wnt signaling and with-
drawal of PGE2 induced lineage differentiation. How-
ever, when cultured in the differentiation medium for a 
long time, the organoids started to die. Therefore, there 
is a trade-off to achieve a balance between proliferation 

Fig. 4 Porcine colonic organoids are more sensitive to drug toxicity. A, B Representative bright‑field images (left) and quantitation of cell viability 
(right) of porcine, monkey and human colonic organoids treated with different concentrations of irinotecan (A) or regorafenib (B) for 4 days. Data 
are shown as mean ± SD (n = 3 independent experiments). C, D Representative bright‑field images (left) and quantitation of cell viability (right) of 
PCOs in the expansion or differentiation medium treated with irinotecan (C) or regorafenib (D) for 4 days. Data are shown as mean ± SD by two‑way 
ANOVA (n = 3 independent experiments). The significant difference was compared to human colonic organoids. *p < 0.05, ** p < 0.01, ***p < 0.001
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and differentiation in intestinal organoids. Withdrawal of 
Wnt signaling activity is necessary for enterocyte differ-
entiation in human colonic organoids. The differentiation 
of goblet cells and EECs is promoted after withdrawal of 
nicotinamide and SB202190 (Sato et  al. 2011). In addi-
tion, Notch inhibition could further promote goblet cell 
hyperplasia and cease proliferation (Otsuka et  al. 2010; 
Sato et al. 2011). These reports provide clues to achieve 
balanced differentiation. In our differentiation system, 
D-1 could not only promote mature cell differentiation, 
but also maintain organoid growth for weeks. It provides 
a useful platform for functional studies, such as drug tox-
icity test. However, there is still a gap between differenti-
ated organoids and tissue. D-2 and D-3 may have greater 
differentiated ability, while obvious growth inhibition and 
cell death limit their application. A more applicable dif-
ferentiation condition needs to be explored.

Pig and monkey are among the animals frequently used 
for drug toxicity test (Dalgaard 2015). In our report, we 
found that PCOs may be closer to human colonic orga-
noids in drug toxicity response. Our conclusion is in 
accordance with other studies to indicate that pigs are a 
good model for drug toxicity test. Firstly, the morphology 
of pig colon is very similar with human (Kararli 1995). 
The pH and transit time affecting drug bioavailabil-
ity in pig colon are also comparable with that of human 
(Helke and Swindle 2013; Martinez et  al. 2002). Sec-
ondly, minipigs have widely been accepted as models for 
toxicity testing of new medicines, especially in Europe 
(Bode et  al. 2010; Ellegaard et  al. 2010). Interestingly, 
the RETHINK project in the Europe has even decided 
to replace the dogs and non-human primates with mini-
pigs for regulatory toxicity testing (Forster et  al. 2010). 
Thirdly, the activity ratios of cytochrome P450, which 
mediates drug metabolism and is crucial for xenobiot-
ics biotransformation and toxicity clearance, are closer 
in minipigs to human, compared to cynomolgus monkey 
(Dalgaard 2015; Turpeinen et al. 2007).

Conclusions
In summary, we demonstrated that the expansion 
medium could support the growth of both porcine and 
monkey colonic organoids for long-term cultivation. 
Reduced Wnt signaling and withdrawal of PGE2 induce 
mature cell differentiation. Furthermore, porcine and 
human colonic organoids are more similar in the drug 
sensitivity, suggesting that PCOs could be a better model 
for the evaluation of anti-colonic cancer drugs.

Methods
Animals
Bama miniature pigs used in this study were raised at 
the Beijing Farm Animal Research Center (affiliated to 

Institute of Zoology, Chinese Academy of Sciences). The 
experiments involving pigs were approved by the Animal 
Ethics Committee of the Institute of Zoology, Chinese 
Academy of Sciences. The cynomolgus monkey (Macaca 
fascicularis) colon tissues were obtained from Yunnan 
Key Laboratory of Primate Biomedical Research, and 
experimental protocols were approved in advance by the 
Institutional Animal Care and Use Committee of Yunnan 
Key Laboratory of Primate Biomedical Research.

Human colon tissue collection and ethics statement
Human colon tissue was freshly obtained at least 10 cm 
away from the tumor border in surgically resected speci-
mens at Peking University Third Hospital, Beijing, China, 
described before (Wang et  al. 2020). All samples were 
obtained with informed consent, and this study was 
approved by the Peking University Third Hospital Medi-
cal Science Research Ethics Committee (M2018083), 
followed by relevant ethical regulations of Peking Uni-
versity Third Hospital Medical Science Research Ethics 
Committee.

Isolation of crypts from porcine, monkey and human colon 
and organoid culture 
The colon tissue was extracted from three adult male pigs 
(6 months old) and two cynomolgus monkeys (14 years 
old) which were euthanized for research. The crypt iso-
lation was conducted based on previous report (Zhao 
et  al. 2015). Briefly, the colon tissue was cut longitudi-
nally and washed by cold PBS for 3–4 times to remove 
the contaminant and feces. Then, adipose and vascular 
tissues were removed by operating scalpel. Small pieces 
of colon tissue (about 10 cm) were incubated in 10 mM 
EDTA in PBS for 30  min on ice. Next, the pieces were 
transferred into new PBS and the crypts were released by 
vigorously scrapping. The epithelial tissue was enriched 
by centrifugation (3 min at 1,000 rpm). The crypts were 
then embedded into Matrigel (BD Biosciences) and 
seeded on 24-well plate. After polymerization, the expan-
sion medium was added. Advanced Dulbecco’s Modified 
Eagle’s Medium/F12 was supplemented with penicillin/
streptomycin, 2 mM GlutaMAX, 1 mM N-acetylcysteine, 
1X N2, 1X B-27 to prepare a basal medium (all from 
Thermo Fisher). The expansion medium was supple-
mented with 50  ng/mL EGF (Invitrogen), 100  ng/mL 
Noggin (R&D Systems), 500  ng/mL R-spondin-1 (R&D 
Systems), 5  μM CHIR-99021 (Selleck), 0.5  μM A-83-
01 (Cayman), 10  μM SB202190 (Selleck), 1  nM Gastrin 
(Tocris), 10  μM Y27632 (Enzo), 2.5  μM PGE2 (Selleck), 
10 mM Nicotinamide (Sigma-Aldrich) and 30%Wnt-con-
ditional medium (Wnt3a-CM) (prepared from L-Wnt3a 
cell line (ATCC)) in basal medium. Growth medium was 
refreshed every 3–4  days. For passaging at 1:3–1:4 split 
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ratios, the organoids were suspended with 1 ml cold PBS 
after removal of medium and were pelleted by centrifu-
gation (3  min at 300  g). Then organoids were embed-
ded into new Matrigel in defined medium as indicated 
in the figure legends. For differentiation experiment, the 
organoids in the expansion medium were split into new 
cell plates with the differentiation medium (omission 
of PGE2 and Wnt3a-CM from the expansion medium, 
2.5 μM CHIR-99021) and analyzed after 7 days.

Immunofluorescence
Immunofluorescence was performed as previously 
described (Li et  al. 2018). Briefly, organoids were fixed 
in 4% paraformaldehyde for 1  h at room temperature. 
Organoids were washed by PBS for 3 times and permea-
bilized by 0.5% Triton X-100 for 1 h at room temperature. 
Then, samples were blocked with PBT solution (3% BSA 
and 0.01% Triton X-100 in PBS) for 2 h at room tempera-
ture and incubated with primary antibodies overnight at 
4  °C. The fluorescein-labeled secondary antibodies (Life 
Technologies, 1:300) and 4′, 6-diamidino-2-phenylindole 
(DAPI) were added for 1 h at room temperature next day. 
The following antibodies were used for immunofluo-
rescence: rabbit anti-Fabp1 (Abcam, ab171739, 1:300); 
mouse anti-E-cadherin (B&D, 610182, 1:300); rabbit anti-
Muc2 (Santa Cruze, sc-15334, 1:300); rabbit anti-ChgA 
(Abcam, ab15160, 1:300). The images were acquired from 
Olympus FV3000 Laser Scanning Microscope.

Alcian blue staining
The colon tissue was fixed with 4% formalin overnight 
and embedded in paraffin. The sections (5 μm) were de-
paraffinized in isopropanol and graded alcohols. Then, 
sections were stained by Alcian blue staining kit (BASO) 
according to manufacturer’s instructions. Sections were 
stained with Alcian blue for 15 min and nuclear fast red 
for 1  min (BA4087B, Baso). The images were obtained 
with a Nikon microscope.

RNA extraction and quantitative RT–PCR
The total RNA was extracted by RNeasy Mini Kit (Qia-
gen). The cDNA was obtained using Revertra Ace (Toy-
obo). Then, real-time PCR reactions were performed 
using qPCR Master Mix (Promega) in triplicates on a 
LightCycler 480 (Roche). The primers of selected gene 
were shown in Supplementary Table 1.

Drug toxicity test
Porcine, monkey and human colonic organoids were 
seeded into 96 well plates in the differentiation medium 
with different concentrations of drugs. The concentra-
tions of irinotecan and regorafenib were set based on 
previous reports (Napolitano et al. 2015; Sim et al. 2018; 

Yao et al. 2020). After 4 days, organoid growth was moni-
tored with a microscope and cell viability was meas-
ured by Cell-Titer Glo 3D Cell Viability Assay (Promega, 
G9682) according to the manufacturer’s instruction. Cell-
Titer reagent (25 μl) was added into each well and incu-
bated with organoids for 30  min at room temperature. 
Then, the supernatant was collected after centrifugation 
(500 g, 1 min) and luminescent signals were calculated by 
luminometer.

Quantification and statistical analysis
Student’s t-test, one-way or two-way ANOVA analyses 
were used to compare difference between two groups 
as indicated in the figure legends. *P < 0.05, **P < 0.01, 
***P < 0.001. Data showed in column graphs indicated the 
mean ± SD. The statistical analysis was carried in Graph-
Pad Prism 6 software. The size of organoids was quanti-
fied with Image J. Each experiment was independently 
repeated at least three times.
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