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Abstract 

Mitochondria are organelles that serve numerous critical cellular functions, including energy production, Ca2+ home-
ostasis, redox signaling, and metabolism. These functions are intimately linked to mitochondrial morphology, which 
is highly dynamic and capable of rapid and transient changes to alter cellular functions in response to environmental 
cues and cellular demands. Mitochondrial morphology and activity are critical for various physiological processes, 
including wound healing. In mammals, wound healing is a complex process that requires coordinated function of 
multiple cell types and progresses in partially overlapping but distinct stages: hemostasis and inflammation, cell pro-
liferation and migration, and tissue remodeling. The repair process at the single-cell level forms the basis for wound 
healing and regeneration in tissues. Recent findings reveal that mitochondria fulfill the intensive energy demand for 
wound repair and aid wound closure by cytoskeleton remodeling via morphological changes and mitochondrial 
reactive oxygen species (mtROS) signaling. In this review, we will mainly elucidate how wounding induces changes in 
mitochondrial morphology and activity and how these changes, in turn, contribute to cellular wound response and 
repair.
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Background
Mitochondria are semi-autonomous and double-mem-
brane-bound organelles in eukaryotic cells with a well-
known role in adenosine triphosphate (ATP) production 
via oxidative phosphorylation (OXPHOS). The ATP 
production machinery requires five protein complexes 
(Complex I-V) embedded in the inner mitochondrial 
membrane (IMM) and two mobile electron carriers 
(Vercellino and Sazanov 2022). In addition to this bio-
energetic role, mitochondria are one the predominant 
source of reactive oxygen species (ROS), byproducts of 

OXPHOS mainly attributable to Complex I and III (Mur-
phy 2008). Resultant mitochondrial ROS (mtROS) enters 
the cytoplasm to promote redox signaling, mediating 
various biological responses, including cell proliferation, 
differentiation, and migration (Fig.  1) (Holmström and 
Finkel 2014).

Mitochondria are also remarkably dynamic, with mor-
phology ranging from individual fragmented punctate 
spheres to highly interconnected reticular networks. 
These morphologies are controlled by antagonizing 
fusion and fission events (Chan 2012). The machinery 
underlying these events is well-conserved, with guano-
sine triphosphatases (GTPases) in the dynamin family as 
core regulators. Mitochondrial fission is accomplished 
by dynamin-related protein 1 (DRP1) (Vepa et  al. 
1999). Upon activation, this large cytosolic GTPase is 
anchored to the outer mitochondrial membrane (OMM) 
by its adaptor proteins, such as mitochondrial dynam-
ics protein 49 (MiD49), fusion 1 protein (FIS1), and 
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oligomerizes into a ring-like structure that constricts to 
sever the parent mitochondrion into two daughter mito-
chondria (Loson et  al. 2013). Apart from the canonical 
DRP1-dependent pathway, various studies reveal that 
a rapid mitochondrial shape transition can be achieved 
by other molecular machinery, including actin-depend-
ent mitochondrial fission, endoplasmic reticulum (ER), 
FUNDC1, and myosin-regulated mitochondrial divi-
sion (Chen et al. 2016; Korobova et al. 2014, 2013; Loson 
et al. 2013; Wu et al. 2016). Mitochondrial Rho GTPase 
MIRO-1 has also been found to regulate mitochondrial 
morphology in multiple organisms(Ding et al. 2016, R.L. 
et al. 2004, Xu et al. 2016). MIRO-1 regulates mitochon-
drial dynamics by the cytosolic Ca2+ signal (Ding et  al. 
2016; Nemani et al. 2018). As for mitochondrial fusion, it 
entails the merging of both OMM and IMM. The former 
is executed by mitofusin 1 and 2 (MFN 1 and 2), while 
the latter is mediated by optic atrophy protein 1 (OPA1) 
(Youle and Bliek 2012). These changes in mitochon-
drial morphology are intimately linked to mitochondrial 

activity, which influences the production of both ATP 
and mtROS, allowing mitochondria to respond to envi-
ronmental stimuli and adapt to cellular demands (Sab-
ouny and Shutt 2020).

Wound healing following injuries is essential for the 
survival of all multicellular organisms (Gurtner et  al. 
2008). In mammals, it is a complex process that involves 
coordinated function of multiple cell types and pro-
ceeds in overlapping but distinct stages: hemostasis 
and inflammation, cell proliferation and migration, and 
tissue remodeling (Gurtner et  al. 2008, Madan et  al. 
2022). Hemostasis occurs immediately after an injury 
when coagulation cascade and blood vessel resealing 
are activated to prevent excessive blood loss. Simulta-
neously, inflammatory cells, including neutrophils and 
macrophages, are recruited to the wound site to defend 
against pathogen invasion (Willenborg et al. 2021). Even-
tually, the epithelial cell proliferates, differentiates, and 
migrates to re-epithelialize the wounded site. Single-cell 
wound repair progresses essentially in a similar manner 

Fig. 1  A model of mitochondrial fragmentation and ROS signaling in regulating wound repair. Mitochondria play multiple roles in both 
single-cellular wound closure and multicellular wound healing. Tissue wound induces an acute elevation of cytosolic Ca2+ through an external 
influx or internal release, leading to mitochondrial fragmentation dependent on DRP-1 or MIRO-1. As a further response to calcium, the fragmented 
mitochondria increase mtROS production, promoting actin ring closure in a single cell system. mtROS may also facilitate multicellular wound 
healing by being involved in angiogenesis and inflammation processes
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as tissue damage repair (Sonnemann and Bement 2011). 
Knowing how a single cell repairs and regenerates itself 
helps to understand mechanistically the cell biology 
involved in tissue damage (Tang and Marshall 2017). 
Accumulating evidence suggests that mitochondria play 
important roles in these stages through changes in their 
morphology and activity (Horn and Jaiswal 2020; Schiff-
mann et al. 2020). In this review, we mainly discuss how 
wounding induces these mitochondrial morphological 
changes and how these changes, in turn, contribute to 
wound response and repair in a cellular system.

Wound‑induced elevation in Ca2+ leads to changes 
in mitochondrial morphology
Elevation of cytosolic Ca2+ in cells around the wound 
margin is conserved across species (Wood 2012). 
Ca2+ is the earliest transcription-independent signal 
to injury (activated in milliseconds) and can activate 
downstream targets to achieve multiple functions in 
wound repair, including inflammation and actomyosin-
regulated wound repair (Cordeiro and Jacinto 2013). 
However, the mechanisms underlying the elevation 
of Ca2+ can be quite diverse. For example, our labora-
tory uses C. elegans syncytium epidermal cell hyp7 as 
a genetically tractable model to study wound repair 
and repair (Ma et al. 2021). In this cell, Ca2+ enters the 
extracellular space directly through transient receptor 
potential (TRP) channels family on the plasma mem-
brane, such as GTL-2 (Antunes et  al. 2013; Razzell 
et al. 2013, Xu and Chisholm 2011) (Fig. 1). In others, 
Ca2+ is released from the internal stores, such as the 
endoplasmic reticulum, via inositol-1,4,5-triphosphate 
(IP3) receptor-activated by G-protein-coupled recep-
tor (GPCR) signaling. Regardless of the initial source, 
intracellular Ca2+ burst and its wave-like propagation 
enable rapid wound detection (Wood 2012).

Mitochondria undergo rapid and reversible fragmenta-
tion after wounding and this depends on cytosolic Ca2+ 
increase (Fu et  al. 2020, Horn et  al. 2020, Ponte et  al. 
2020). This response is also spatially restricted, with 
injury-proximal fragmented mitochondria isolated from 
injury-distal interconnected mitochondria. With different 
cell types, the wounding-induced mitochondrial shape 
change is dependent on different molecular machinery 
(Horn and Jaiswal 2020). This may be due to inherent dif-
ferences between cell types, which affect the expression 
of specific regulators. Wound-induced fragmentation of 
mitochondria is commonly driven by DRP-1 (Ponte et al. 
2020). Ablation of DRP-1 and its adaptor MiD49 in mam-
malian cells results in a hyper-elongated mitochondrial 
network that fails to fragment upon focal membrane 
injury, leading to compromised plasma membrane repair 
(Horn et  al. 2020) (Fig.  1). In Drosophila embryos with 

different drp-1 mutants, two types of epidermal wound 
closure phenotypes are observed, a mild one with a sig-
nificantly slower closure rate and a strong one with an 
expanded wound area (Ponte et al. 2020). However, how 
DRP1 senses the damage and induces mitochondrial divi-
sion remains unknown. Wound-induced mitochondrial 
fragmentation is also observed in C. elegans following 
epidermal injury. The local mitochondrial network at the 
site of injury becomes first fragmented, which is followed 
by fragmentation of surrounding mitochondria (50–70 
μm from the wound site) within minutes (Fu et al. 2020). 
This fragmentation, however, is independent of DRP1, 
as both knockdown of drp-1 and drp-1 deletion mutant 
show normal mitochondrial fragmentation after wound-
ing (Fu et al. 2020). This study also finds that spreading 
mitochondrial fragmentation requires MIRO-1 (Fu et al. 
2020) (Fig. 1), an adaptor on OMM that is important for 
mitochondrial transport (Cai and Sheng 2009). MIRO-1 
functions as a Ca2+ sensor on the OMM and can directly 
sense the wounding-induced elevation of Ca2+ that trig-
gers the rapid mitochondrial fragmentation.

MIRO-1 is involved in mitochondrial transport along 
the microtubule and directly interacts with Trak-1, a 
kinesin protein involved in trafficking (Debattisti et  al. 
2017). However, knockdown of trak-1 in C. elegans 
doesn’t affect wounding-induced mitochondrial frag-
mentation. Moreover, neither does the inhibition of 
microtubule dynamic, suggesting wound-induced mito-
chondrial fragmentation is not microtubule dependent 
(Fu et  al. 2020). The underlying molecular mechanism 
of MIRO-1 in controlling mitochondrial fragmentation 
remains to be clarified. It is possible that other mitochon-
drial fission machinery could interact with MIRO-1 to 
regulate mitochondrial fission, or MIRO-1 itself could 
function directly on mitochondrial fission. It is known 
that loss of mitochondrial membrane potential results 
in mitochondrial fragmentation (Zorova et  al. 2018); 
whether MIRO-1 is involved in regulating mitochondrial 
membrane potential remains unknown. In Drosophila 
embryonic wounding, DRP-1 regulates injury-induced 
mitochondrial division, consistent with findings in mam-
malian cells (Horn et al. 2020, Ponte et al. 2020). While 
both DRP-1 and MIRO-1 regulate mitochondrial dynam-
ics, it remains unclear if DRP-1 and MIRO-1 function 
redundantly in response to wounding or whether there 
is any genetic or physical interaction between MIRO-1 
and DRP-1. MIRO-1 is also necessary for the wound-
induced dendrite regeneration of PVD sensory neurons, 
which respond to high threshold mechanical stimuli in 
C. elegans (Zhao et  al. 2021). Altogether, these findings 
demonstrate that Ca2+-dependent mitochondrial frag-
mentation is a common response to injury and allows 
efficient repair of wounds.
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Mitochondrial fragmentation activates the local 
production of ROS
Elevation in cytosolic Ca2+ triggers rapid mitochon-
drial Ca2+ uptake via mitochondrial calcium uniporter 
(MCU), which contributes to wound healing by tran-
siently enhancing mitochondrial reactive oxygen spe-
cies (mtROS) production (Xu and Chisholm 2014). 
This response was first visualized in C. elegans epider-
mis following injury by mitochondrial superoxide sen-
sor mito::cpYFP, and is ablated in MCU-1 mutants (Xu 
and Chisholm 2014). Although the precise mechanism 
underlying this enhanced mtROS production remains 
enigmatic, the opening of mitochondrial permeability 
transition pore triggered by mitochondrial Ca2+ uptake, 
and wounding-induced mitochondrial fragmentation, 
are proposed to be involved (Ma et  al. 2021). Similarly, 
a drastic increase in mtROS is observed in delaminat-
ing cells during Drosophila dorsal closure, a late-embry-
ogenesis stage resembling wound healing (Muliyil 
and Narasimha 2014) and embryonic wound healing 
(Hunter et  al. 2018). Mitochondrial Ca2+ uptake stimu-
lates OXPHOS to enhance the production of ATP and its 
byproduct mtROS (Liu and O’Rourke 2008). This ATP 
synthesis is dispensable for skeletal muscle repair, where 
mtROS exhibits a dose-dependent beneficial impact on 
wound healing (Le Moal et al. 2017). These findings sug-
gest that wound-induced mtROS burst plays a conserved 
role in cellular wound repair. While this highlights the 
benefit of acute mitochondrial ROS signaling for wound 
repair, the question remains of how mitochondrial ROS 
signaling is localized to the injury site.

mtROS promote wound closure in a single cell
ROS mainly arises from mitochondria, peroxisomes, and 
the endoplasmic reticulum but can also be generated 
in the cytoplasm. The best characterized intracellular 
sources of ROS are mitochondria and NADPH oxidases 
on the plasma membrane (Holmström and Finkel 2014). 
Homeostatic ROS is required for both cellular wound 
closure and multicellular wound healing processes, 
including hemostasis, inflammation, and tissue remod-
eling (Dunnill et  al. 2017; Rives et  al. 2020). Epidermal 
wound healing in C. elegans requires the formation of 
an actin ring surrounding the wound site via rapid actin 
polymerization, which is mediated by CDC42 and nega-
tively regulated by RHO-1 (Ma et al. 2021, Xu et al. 2021, 
Xu and Chisholm 2011). Ca2+-triggered mtROS increase 
at the C. elegans epidermal wound site can promote 
wound repair. Inhibiting mtROS by antioxidants blocks 
actin-based wound closure, while the elevation of mtROS 
by genetic mutation enhances wound healing (Xu and 
Chisholm 2014). By targeting a redox-sensitive motif, 
mtROS can inhibit RHO-1 activity, which negatively 

regulates actin ring closure (Xu and Chisholm 2014) 
(Fig.  1). A similar mechanism is observed in injured 
skeletal muscle cells (Horn et al. 2017). Calcium triggers 
mtROS production, facilitating wound closure through 
activating RhoA to promote F-actin accumulation. Later, 
it was found that upregulation of mtROS is required 
for the enhanced wound closure in the fzo-1 (human 
MFN1/2 homology) mutant C. elegans where the mito-
chondria are constitutively fragmented (Fu et al. 2020).

Increased mtROS production and the upregulation of 
several oxidative signals genes, including cytochrome 
P450 (cyp) family genes, are detected in fzo-1 mutants 
compared to WT animals after wounding (Fu et al. 2020). 
CYPs can generate ROS, while ROS can reversely upreg-
ulate CYPs expression (Zhao et  al. 2017). RNAi knock-
down of cyp genes can lead to decreased mtROS levels 
and inhibit actin ring closure, while their overexpression 
accelerates actin ring closure in both fzo-1 mutants and 
WT animals. Similarly, antioxidants treatments in fzo-1 
mutants decrease ROS levels and further delay wound 
closure, while treatment with mitochondrial Complex 
I inhibitor rotenone, which induces ROS production, 
can revert these effects (Fu et  al. 2020). During Dros-
ophila dorsal closure, mtROS can trigger cell delamina-
tion (Muliyil and Narasimha 2014). It was found that 
mtROS can drive mitochondrial fragmentation through 
Drp1 and caspase activation and that mtROS influences 
cytoskeleton rearrangement through the Rho Effec-
tor ROCK and pMLC pathway (Muliyil and Narasimha 
2014). In laser-wounded Drosophila embryonic epi-
dermis, mitochondrial fission defects can also lead to 
reduced mtROS levels and delayed wound closure (Ponte 
et al. 2020). These results suggest that an elevated mtROS 
level is necessary and sufficient for enhanced wound clo-
sure in C. elegans epidermis.

Mitochondrial ROS facilitates wound healing 
in multicellular organisms
mtROS is also required for damaged tissue homeostasis, 
mediating vasoconstriction and thrombus formation. 
Antioxidant treatment can inhibit the vasoconstric-
tion upon cold exposure in mice, and ROS is involved in 
vasoconstriction via the ROS/RhoA/ROCK1 and ROS/
PKC/ET-1 pathways in vascular smooth muscle cells 
and endothelial cells (Zhang et  al. 2021). Vasculature-
restricted respiratory deficiency through cox10 ablation 
causes embryonic lethality in mice, while in adult mice, 
cox10 deficiency shows defective angiogenic capacity 
near wounds (Schiffmann et  al. 2020). Cell-permeable 
mitochondrial ubiquinol–cytochrome c reductase bind-
ing protein (UQCRB) can increase mtROS production, 
which induces vascular endothelial growth factor (VEGF) 
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expression and enhances angiogenesis and cutaneous 
wound healing in mice (Chang et al. 2015).

mtROS is responsible for both the production of pro-
inflammatory cytokines after lipopolysaccharide (LPS) 
stimulation in normal cells and hyperproduction of 
cytokines in cells from patients with tumor necrosis fac-
tor receptor-associated periodic syndrome (TRAPS), an 
autoinflammatory disease (Bulua et  al. 2011). mtROS 
are upregulated through coupling TLR1/2/4 signaling to 
mitochondrial Complex I via TNF receptor-associated 
factor 6 (TRAF6) and evolutionarily conserved signaling 
intermediate in Toll pathway (ECSIT). Deleting TRAF6 
and ECSIT or overexpressing antioxidant enzymes in 
mitochondria results in decreased mtROS and defective 
bacterial-killing (West et  al. 2011). In the early stage of 
skin wound healing in mice, macrophages show hall-
marks of a dysfunctional TCA cycle as well as increased 
mtROS production. Increased mtROS affects HIF1α 
stabilization, converting macrophages into M1 subtype, 
which promotes vascularization and inflammation dur-
ing wound healing (Willenborg et al. 2021). Thus, mtROS 
signaling is essential for wound healing at both single-cell 
and multi-cell levels. However, it is important to real-
ize that excessive and uncontrolled ROS production can 
damage tissue and lead to non-healing wounds in dis-
eases such as diabetes (Deng et  al. 2021). Consistently, 
applying oxygen-releasing and ROS–scavenging hydrogel 
to diabetic wounds in mice may promote wound heal-
ing by augmenting angiogenesis, re-epithelialization, and 
inhibiting inflammation (Guan et al. 2021).

Conclusions
Accumulating evidence suggests that mitochondrial 
dynamics and function respond to wounding and will 
lead to changes in the downstream signals that partici-
pate in the wound healing process. As one of the primary 
sources of ROS, mitochondria are an important player 
in generating these signals. ROS can directly affect pro-
tein function through posttranscriptional modification 
or indirectly by regulating protein expression. While 
mitochondria and ROS are promising targets to promote 
wound healing, it is essential to consider ROS’s biphasic 
and dose-dependent roles and the different functions 
of mitochondria and mitochondrial ROS in various cell 
types. It is also important to identify more details and 
underlying mechanisms to achieve higher efficiency and 
reduction in side effects. For example, identifying the 
threshold level of detrimental mtROS should be helpful 
for personalized medicine. As wound healing is a com-
plex process involving various cell types, it is important 
to explore the functions of mitochondria in the interac-
tion between cells in addition to focusing on just one 
cell type. In addition, the stage-specific roles of mtROS 

in wound healing are still poorly defined. Furthermore, 
the endogenous enzymatic and non-enzymatic fac-
tors involved in antioxidant defense systems that guard 
against mtROS should also be considered in wound heal-
ing. Future development and application of real-time 
sensors to detect how mitochondria sense the wounding 
in model organisms such as C. elegans will further help 
the study of the highly dynamic wound healing process.
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