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Advanced cryopreservation engineering 
strategies: the critical step to utilize stem cell 
products
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Abstract 

With the rapid development of stem cell-related therapies and regenerative medicine, the clinical application of stem 
cell products is on the rise. However, ensuring the effectiveness of these products after storage and transportation 
remains a challenge in the transformation to clinical trials. Cryopreservation technology allows for the long-term 
storage of cells while ensuring viability, making it a top priority for stem cell preservation. The field of cryopreserva-
tion-related engineering technologies is thriving, and this review provides an overview of the background and basic 
principles of cryopreservation. It then delves into the main bioengineering technologies and strategies used in cryo-
preservation, including photothermal and electromagnetic rewarming, microencapsulation, and synergetic ice 
inhibition. Finally, the current challenges and future prospects in the field of efficient cryopreservation of stem cells 
are summarized and discussed.
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Background
Stem cell medicine plays an essential role in various bio-
medical fields, such as regenerative medicine, cell ther-
apy, and tissue engineering (Jin 2017; Yamanaka 2020; 
Bacakova et  al. 2018). With the rapid development of 
stem cell-based medicine, the demand for high-quality 
stem cell products has become increasingly urgent (Aijaz 
et  al. 2018). Cryopreservation is necessary for the stor-
age, transportation, and application of stem cell prod-
ucts. Therefore, advanced cryopreservation science has 
emerged as a critical area of focus (Giwa et al. 2017).

Cryopreservation is a technique that involves cool-
ing biomaterials at low temperatures (typically -80℃ or 

-196℃) for long-term preservation (Nagashima et  al. 
1995; Rall et al. 1985). During cryopreservation, cellular 
metabolism and synthesis in living cells are significantly 
reduced, or even stagnated, which is the fundamen-
tal mechanism for achieving long-term preservation of 
biological specimens (Steponkus et  al. 1990). Cryopre-
served stem cells can maintain their initial viability and 
pluripotency after thawing, allowing for further basic 
research and clinical applications (Khetan et  al. 2019; 
Khetan 2022).

Physical and chemical damage to stem cells mainly 
occurs during freeze-thawing procedures in the cryo-
preservation process (He 2011). Currently, cryopreserva-
tion is mainly divided into two categories: programmable 
slow freezing and vitrification (Zhao et  al. 2017). The 
most commonly used programmable slow-freezing 
method inevitably results in ice crystal formation both 
intracellularly and extracellularly during the cooling 
stage, which is the main cause of physical damage (Zhao 
et  al. 2014). As ice crystals form, the concentration of 
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the  remaining unfrozen solution increases, which also 
leads to chemical damage to the cells (Zhao et al. 2014). 
Vitrification is another well  established technique that 
does not result in ice crystal formation during the cool-
ing stage (Rall and Fahy 1985). However, it has its own 
limitation, which is devitrification. Devitrification usu-
ally occurs during rewarming and can cause ice recrystal-
lization, physical damage, and ultimately, fatal injury to 
cryopreserved cells (Biggs et al. 2017; He et al. 2018).

With the explosive development of bioengineer-
ing technology, innovative biotechnological tools and 
materials are being applied to cryopreservation to 
improve   the  efficiency and cell viability during freez-
ing and thawing (Diaz-Dussan et  al. 2020; Yao et  al. 
2022; Naqvi et al. 2018). This has led to a revolutionary 
advancement in the science of cryopreservation. In this 
review, we introduce the development history and the 
fundamentals of cryopreservation, and the emerging 
engineering techniques in cryopreservation, including 
photothermal rewarming, electromagnetic rewarming, 
and microencapsulation. Additionally, we discuss syn-
ergistic ice inhibition strategies that combining different 
ice inhibition methods and highlight the current status of 
stem cell preservation. By reviewing advanced technolo-
gies for inhibiting ice injuries during cryopreservation, 
we aim to inspire new ideas and reveal new insights into 
advanced high-efficiency cryopreservation science.

Cryopreservation
In 1949, the discovery of cryoprotective compounds and 
their efficacy was first reported, with glycerol being identi-
fied as an effective agent for sperm cryopreservation (Polge 
et al. 1949). Cryopreservation is possible due to the inhib-
ited physiological metabolism of organisms at low tem-
peratures (Vecino et  al. 2001), and the Arrhenius formula 
describes the relationship between metabolic activity and 
temperature. Based on this formula, biological samples can 
be stored at -196 °C (liquid nitrogen) for hundreds of years 
as the physiological and metabolic activities of organisms 
decrease almost to a standstill at this temperature (Mazur 
1984). This theoretical basis for long-term storage at low 
temperatures is applicable to all biological samples.

In 1972, the two-factor hypothesis of cell damage 
during freezing was proposed based on the quantita-
tive analysis of the amount of freezing and the permea-
tion process of the solution during freezing (Mazur et al. 
1972). The hypothesis states that if the cooling rate is too 
slow, the extracellular solution will preferentially con-
tact the external cold source and freeze. As a result, an 
osmotic pressure difference will be created between the 
inside and the outside of the cell, and intracellular water 
will continue to leak out. The cells will contract strongly, 
causing cell shrinkage that can destroy cytoskeleton and 

protein structures, leading to solution damage (Karlsson 
et al. 1994; Yang et al. 2009; Zhao et al. 2014; Fahy et al. 
2004). Additionally, intracellular ice damage can occur if 
the freezing speed is too fast, preventing the intracellular 
solution from infiltrating outside the cell (Karlsson et al. 
1994). The two-factor hypothesis provides a framework 
for understanding the damage caused to cells under dif-
ferent cooling rates and has greatly advanced the field of 
cryobiology.

To mitigate cell damage during cryopreservation, cryo-
protectants (CPAs) are commonly used to improve cell 
survival rates (Sultanbawa et al. 2001; Langer et al. 2006; 
Xianqing et al. 2015). CPAs can be permeable or non-per-
meable depending on their ability to pass through the cell 
membrane (Cabrita et al. 2003). Permeable CPAs such as 
dimethyl sulfoxide, glycerol, ethylene glycol, and propylene 
glycol can enter the cell through the membrane and reduce 
the amount of intracellular free water, thus decreasing the 
formation of intracellular ice crystals. Non-permeable 
CPAs like trehalose, polyethylene glycol, glucan, sucrose, 
and polyvinylpyrrolidone, on the other hand, cannot enter 
the cell and usually act on the hydrophobic region of the 
biofilm, modifying its structural plasticity and increasing 
its tolerance to freezing (McGann 1978).

In recent years, there have been exciting advancements 
in the discovery of various highly promising cryopro-
tective materials. Notably, the discovery of antifreeze 
proteins (AFPs) in organisms exhibiting exceptional ice 
recrystallization inhibition has significantly enhanced 
the post-cryopreservation viability of the human embry-
onic kidney cell line HEK 293T. This improvement was 
achieved through the introduction of AFP both inside 
and outside the cells, demonstrating the remarkable 
potential of AFPs as cryoprotective agents (Sreter et  al. 
2022). Widely employed in the realm of cryopreservation, 
these AFPs have found extensive application in studies 
involving the cryopreservation of sperm, embryos, and 
ovaries (Robles et al. 2019; Lee et al. 2015).

In stem cell preservation, dimethyl sulfoxide (DMSO) 
is commonly employed as a cryoprotectant. However, it 
has been established that DMSO can exhibit cytotoxic-
ity towards cells (Verheijen et  al. 2019). Consequently, 
there has been growing interest in exploring alterna-
tive options. Notably, several synthetic polymers with 
the ability to suppress ice formation have demonstrated 
tremendous potential in this regard. Wang conducted 
research using polyvinyl alcohol (PVA) as a protective 
agent and demonstrated a significant increase in the via-
bility of mesenchymal stem cells (MSCs). In the presence 
of PVA, MSC viability rose from 71.2% to an impressive 
95.4%. This finding highlights the effectiveness of PVA as 
a cryoprotectant for preserving MSCs (Wang et al. 2011). 
Recent reports have provided compelling evidence of 
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the utilization of polyampholytes as innovative protec-
tive agents. Drawing inspiration from AFPs, these poly-
ampholytes possess a unique molecular structure that 
encompasses both negatively and positively charged 
groups on a single chain. This distinctive configura-
tion imparts exceptional properties in terms of inhibit-
ing ice nucleation and delaying the freezing process. 
Their remarkable ability to prevent ice formation makes 
them highly promising for cryoprotection applications 
(He et  al. 2017). Matsumura synthesized carboxylated 
poly-L-lysine (COOH-PLL) and found that rat MSCs 
cryopreserved with 7.5% PLL showed significantly higher 
viability compared to cells preserved with 10% DMSO 
(Matsumura et al. 2009). Furthermore, cryopreservation 
with PLL did not cause inappropriate differentiation in 
the stem cells. He successfully cryopreserved hepatocyte 
spheroids using a macromolecular cryoprotectant (poly-
ampholytes) combined with a DMSO solution. The study 
revealed that addition of polyampholytes significantly 
enhanced post-thaw recovery and minimized cryoinjury-
associated membrane damage, surpassing the capabilities 
of DMSO alone (Matsumura and Hyon 2009). In addi-
tion, some nanomaterials such as graphene and nanocel-
lulose are also used in cryoprotection research (Bai et al. 
2019; Li et al. 2019a).

In addition to inhibiting ice crystal formation, the 
protective effect of protectants on cells can be achieved 
through moderate dehydration. Huang demonstrated the 
combination of extracellular alginate pre-dehydration 
and sub-zero temperature ice seeding, resulting in high 
cell viability of fibroblasts, adult stem cells, and eryth-
rocytes after cryopreservation without the use of per-
meable protectants (Huang et  al. 2017). Similarly, Shen 
utilized permeable cryoprotectant alginate to dehydrate 
erythrocytes before freezing, followed by the replace-
ment of intracellular water with a low concentration of 
glycerol (5% or 7.5%). This method successfully cryopre-
served a large number of erythrocytes with a high sur-
vival rate of nearly 95% through rapid cooling of EP tubes 
(Shen et al. 2021). Matsumura reported that controlling 
osmotic pressure to regulate moderate cell dehydration 
can significantly inhibit intracellular ice crystal formation 
by using polyampholytes (Matsumura et al. 2021). These 
promising cryoprotective materials hold significant 
research and application value. Exploring and harnessing 
these protective agents can greatly advance the field of 
multi-scale cryoprotection, paving the way for significant 
developments in preserving various biological entities at 
different scales.

Cooling and warming processes are both important for 
cell survival during cryopreservation. Traditional cryo-
preservation methods use slow freezing to reduce the for-
mation of ice crystals in cells by controlling the freezing 

rate of biological samples, thereby reducing damage 
to the cell membrane (Meyers 2005) and cytoskeleton 
(Vincent et  al. 1992). During cooling, supercooling of 
the cell solution occurs, leading to the risk of uncontrol-
lable crystallization and subsequent cell death (Zavos 
et al. 1983). To address this issue, ice seeding techniques 
have become common practice in reducing supercooling. 
Mechanical induction, physical field modulation, and ice-
nucleating agents are currently utilized for ice seeding 
(Weng et  al. 2017). Mechanical ice seeding involves the 
contact of a pre-cooled probe with the supercooled solu-
tion, inducing rapid ice formation. Precise modulation of 
electromagnetic and acoustic fields can also be employed 
for ice seeding. In recent years, there has been rapid 
development in ice nucleating agents. Various agents, 
including sand, polysaccharides, bacterial proteins, lipids, 
and more, have demonstrated the ability to modulate the 
formation of ice nuclei (Jiang et  al. 2021; Murray et  al. 
2023; Murray et  al. 2022; Miles et  al. 2022). The use of 
ice nucleating agents has proven effective in reducing cell 
damage during cooling and increasing the survival rate of 
cryopreserved cells (Daily et al. 2023; Huang et al. 2017).

During rewarming, convective rewarming in the water 
bath is the main method (Zhao and Fu 2017). However, 
slow freezing still makes it difficult for cells to completely 
avoid damage from ice crystal formation (Choi et  al. 
2011). Vitrification preservation, on the other hand, can 
prevent ice crystal formation and has better cryopreser-
vation efficiency (Chen et al. 2009). Vitrification involves 
the direct transformation of the liquid phase into a glassy 
solid without crystallization, which requires higher 
CPA concentration and ultra-high cooling rates. High 
CPA concentrations, however, may cause osmotic shock 
and chemical toxicity to cells, resulting in cytoskeleton 
deformation (Vincent et  al. 1989; Joly et  al. 1992), spin-
dle disintegration, and chromosome diffusion (Saunders 
et al. 1999). Furthermore, water bath convection during 
rewarming in vitrification preservation may cause devit-
rification, which can be fatal to biological samples (Zhao 
and Fu 2017). Devitrification is significantly related to 
slow rewarming rates (Han et al. 2008; Zhang et al. 2019), 
and therefore, we need a rewarming method that can 
increase the rate of rewarming and reduce devitrification 
to ensure efficient preservation of biological samples.

Physical field rewarming
Photothermal rewarming
With the advancement of engineering technology, 
numerous potential rewarming technologies are being 
developed. In this section, we focus on photothermal 
rewarming and electromagnetic rewarming, discussing 
their development status and future prospects. In recent 
years, with the vigorous development of nanoscience, 
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nanoparticles (NPs) with excellent photothermal conver-
sion efficiency have been discovered. To achieve rapid 
rewarming, researchers began to consider combining 
these NPs with near-infrared light (Bischof et al. 2018).

In 2014, Jin et  al. used India ink as photothermal 
NPs to significantly inhibit ice crystal formation dur-
ing rewarming (Jin et  al. 2014), and the survival rate of 
the mouse oocytes was close to 100% after rapid rewarm-
ing with laser pulses (Fig. 1A). In convection rewarming, 
zebrafish embryo preservation did not show good effects 
due to its large size. To solve this problem, Khosla and his 
partners considered the use of photothermal rewarm-
ing. They injected gold nanorods (GNRs) and propylene 
glycol into zebrafish embryos for cryopreservation and 
rewarmed the embryos with 1064 nm laser pulses (Kho-
sla et  al. 2017). The results showed that gold nanorods 
significantly improved embryo viability after hypother-
mic resuscitation (Fig.  1B). By making full use of the 

photothermal conversion ability of graphene oxide NPs 
(Panhwar et  al. 2018), Panhwar significantly improved 
the survival rate of human umbilical vein endothelial cells 
(HUVECs) after cryopreservation by near-infrared light 
heating (Fig. 1 C). Moreover, compared with GNRs, tita-
nium nitride (TiN) nanomaterials showed better photo-
thermal ability (Alvarez et  al. 2022). TiN nanomaterials 
were found to provide higher heating rates and temper-
ature uniformity during laser rewarming (Fig.  1D). In 
addition, TiN has excellent biocompatibility, and human 
dermal fibroblast (HDF) cells remained at a survival 
rate of 96% after being co-cultured with TiN solution 
for 24  h. Rapid melting of ice and reducing devitrifica-
tion and ice recrystallization were achieved by exploit-
ing the remarkable photothermal conversion properties 
of  Ti3C2Tx (Cao et al. 2022) (Fig. 1E). Moreover,  Ti3C2Tx 
has synergetic antibacterial activity, allowing for stem 
cell cryopreservation without bacteria (Fig. 1F). The laser 

Fig. 1 Development of photothermal rewarming. A The machine of laser pulse. Reproduced with permission (Jin et al. 2014). Copyright 2014, 
Elsevier. B Comparison of survival viabilities of embryos with four treatments. Reproduced with permission (Khosla et al. 2017). Copyright 2017, 
American Chemical Society. C The cryopreservation procedures based on laser warming. Reproduced with permission (Panhwar et al. 2018). 
Copyright 2018, Royal Society of Chemistry. D Laser rewarming of TiN NPs containing CPA microdroplets. Reproduced with permission (Alvarez et al. 
2022). Copyright 2022, Bioengineering and Biotechnology. E–F Inhibition Effect of  Ti3C2Tx MXene on Ice Crystals Combined with Laser-Mediated 
Heating. E Mechanism of inhibiting ice crystals. F The synergetic antibacterial activity of  Ti3C2Tx MXene. E–F Reproduced with permission (Cao et al. 
2022). Copyright 2022, American Chemical Society
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rewarming device is relatively simple and is usually used 
to rewarm small samples due to its limited penetration 
(Khosla et al. 2019). Furthermore, laser rewarming can be 
combined with other methods to inhibit ice crystal for-
mation. In the future, photothermal rewarming will not 
only conduct more research on the biocompatibility of 
nanomaterials but also pay attention to how to apply it to 
large-scale biological samples.

Electromagnetic rewarming
Electromagnetic rewarming is a technique used to 
inhibit the formation of ice crystals during rewarm-
ing by introducing an electromagnetic field. It has been 
shown to increase heating rates, reduce devitrification, 
and provide uniform heating (Robinson et al. 2002; Evans 
2000; Robinson et  al. 1999). Previous studies on micro-
wave rewarming of cryopreserved canine kidneys have 
revealed limited microwave penetration and a thermal 
runaway phenomenon in biological tissues during heat-
ing (Ketterer et al. 1971; Guttman et al. 1977; Pegg et al. 
1978). To overcome the limitations of microwave heating, 
an open heating system that uses spiral coils to generate 
low-frequency electromagnetic waves has been devel-
oped, enabling uniform heating of the cryoprotectant 
solution (Ruggera et  al. 1990). Closed electromagnetic 
heating devices have also been developed to limit electro-
magnetic energy, such as multi-mode resonators (Rach-
man et  al. 1992) and single-mode resonators (Luo et  al. 
2006). The multi-mode resonator is the superposition of 
multiple plane waves incident on the sample from differ-
ent directions, and there are no strict requirements on 
the size and position of the sample. The single-mode res-
onator generates standing waves in a specially designed 
cavity, with strict requirements on the position and size 
of the sample. Both can improve the heating uniformity, 
with the latter significantly reducing spatial temperature 
differences (Wang et al. 2014).

In 2016, magnetic nanoparticles (MNPs) were intro-
duced into an electromagnetic field to revive cryopre-
served human umbilical cord blood mesenchymal stem 
cells (MSCs) (Wang et al. 2016), significantly improving 
their survival rate after vitrification (Fig.  2A). Several 
research groups have conducted further studies on MNPs 
in electromagnetic rewarming, showing that it can pre-
serve intact stem cell microstructures and achieve high 
immediate cell survival after cryopreservation (Liu et al. 
2018) (Fig.  2B). MNPs combined with radio frequency 
rewarming technology were found to improve the activ-
ity of porcine arteries after rewarming (Manuchehrabadi 
et  al. 2017) (Fig.  2C). Mechanical experiments showed 
that the mechanical properties of nano-magnetothermal 
rewarming did not change significantly compared with 
the fresh group. Electromagnetic rewarming of rat hearts 

significantly improved heating uniformity and reduced 
devitrification (Chiu-Lam et  al. 2021) (Fig.  2D). Perfu-
sion of rat kidneys with MNPs and subsequent electro-
magnetic rewarming after vitrification preservation 
significantly inhibited the growth of ice crystals, with 
the organs showing complete macroscopic structures 
(Sharma et al. 2021) (Fig. 2E). As research on electromag-
netic rewarming deepens, the prospect of cryopreserva-
tion for cell tissues and organs becomes more promising.

In summary, electromagnetic rewarming demonstrates 
significant potential in cryopreservation of biological 
samples across various scales. However, it is crucial to 
address certain limitations and disadvantages associated 
with this technique. One aspect of concern is the intro-
duction of NPs during the process, which may possess 
cytotoxic properties. Furthermore, incomplete removal 
of NPs can impact the security of cryopreservation. 
Additionally, the distribution of NPs within the vascular 
system may lead to uneven rewarming in avascular or 
hypovascular sites. These factors warrant careful atten-
tion and consideration when implementing electromag-
netic rewarming methods.

Microencapsulation
Mechanisms and advantages of microencapsulation
Since the first report of hydrogel-encapsulation technol-
ogy in 1980  (Lim et  al. 1980), this method has gained 
widespread use in various fields such as cryopreserva-
tion, transplantation, tissue engineering, and regenera-
tive medicine due to its unique advantages (Zhao et  al. 
2017; Ramzy et al. 2022; Wilson et al. 2013). Microencap-
sulated cells can maintain normal physiological activities 
due to the pores of their encapsulated hydrogels, which 
can freely pass small molecules such as oxygen, electro-
lytes, and nutrients, as well as cellular metabolites such 
as harmful substances like hormones and wastes (Goosen 
1992; Olabisi 2015). At the same time, the limited pores 
can effectively separate larger substances such as patho-
genic microorganisms, cells, antibodies, and immuno-
globulins from contact with encapsulated cells (Prakash 
et al. 2005). These advantages enable stem cells to main-
tain their stemness, persistence, and immunomodulatory 
properties when transplanted into a specific environment 
(Zhao et al. 2022; Mao et al. 2019).

Furthermore, microencapsulation can protect cells 
during cryopreservation. The hydrogel microencapsu-
lation system with a core–shell structure can effectively 
inhibit the inward growth of ice crystals and protect cells 
in the microspheres from physical damage caused by 
ice crystal formation during conventional slow freezing 
(Kusano et al. 2008). This is one of the main advantages 
of microencapsulation in cryopreservation. The hydrogel 
system can also protect cells from chemical damage by 
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effectively buffering the diffusion rate of CPAs, thereby 
preventing apoptosis caused by transient high concen-
trations of CPAs (Sarker et  al. 2014; Li et  al. 2019b). In 
addition, hydrogel-encapsulation systems can effectively 
address the major challenge of vitrification preservation, 
devitrification, by avoiding intracellular ice crystal forma-
tion and damage caused by rewarming. Finally, a syner-
gistic ice crystal inhibition strategy involving multiple 
physical fields combined with microencapsulation, which 
has different abilities to inhibit ice crystals, plays a crucial 
role in cryopreservation.

General methods and relative merits 
of microencapsulation
Currently, various advanced microencapsulation tech-
nologies are being developed. In this section, we focus on 
the commonly used methods of cell microencapsulation, 
including conventional microfluidic control, electro-
static spray, and centrifugal microfluidics, as well as their 
advantages and disadvantages. Since no single method 
is suitable for all situations, an appropriate method can 
be selected for microencapsulation according to specific 
needs.

Fig. 2 Devitrifification inhibition and uniform heating based on electromagnetic rewarming. A The schematic illustration of magnetic warming. 
Reproduced with permission (Wang et al. 2016). Copyright 2016, Elsevier. B Electromagnetic rewarming of stem cells microencapsulated 
in hydrogels. Reproduced with permission (Liu et al. 2018). Copyright 2018, American Chemical Society. C Cryopreservation of blood vessel tissues 
using magnetic field. Reproduced with permission (Manuchehrabadi et al. 2017). Copyright 2017, American Association for the Advancement 
of Science. D Electromagnetic rewarming of rat heart. Reproduced with permission (Chiu-Lam et al. 2021). Copyright 2021, AAAS. E The schematic 
illustration of complete and ruptured kidneys. Reproduced with permission (Sharma et al. 2021) Copyright 2021, Wiley–VCH
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Conventional microfluidics
Generally, microfluidics can produce more homogene-
ous microcapsules compared to electrostatic spray and 
centrifugation (Zhao et al. 2017; Cheng et al. 2018). How-
ever, conventional microfluidic control requires high 
conditions and special facilities, such as clean rooms and 
skilled researchers (Kang et al. 2014). Additionally, some 
materials, such as plastic-based microfluidic devices, 
may not be suitable for long-term or reuse as they are 
prone to aging or clogging (Zhao et  al. 2017). Conven-
tional microfluidics also introduces oil as a carrier phase 
for the formation of microcapsules (Fig.  3A), leading to 
problems such as biological toxicity and contamination 
(Zhu et al. 2019; Cheng et al. 2018). In response to these 
issues, researchers have made some improvements. For 
instance, a controllable all-aqueous-phase microfluidics 
method was presented (Fig. 3B) for generating stable and 
continuous core–shell microcapsules (Zhu et  al. 2019). 
Moreover, a tube-in-tube capillary microfluidic device 
was developed to encapsulate stem cells in core–shell 
microcapsules without using toxic acid or oil and can be 
repeatedly used in the long term (Zhao et al. 2017).

Electrostatic spraying
Electrostatic spraying is a commonly used method of 
encapsulation (Fig.  3C). Significant advances have been 
made in the fields of tissue engineering and cryopreser-
vation, including bone repair (Yang et  al. 2021), cardiac 
injury repair (Choe et  al. 2019), and long-term storage 
(Gryshkov et al. 2021, 2014; Lu et al. 2017; Zhang et al. 
2018) after stem cells were encapsulated using elec-
trostatic spraying. The mechanism involves adjusting 
various parameters in the system, such as voltage, flow 
rate, needle gauge, working distance, and biomaterial 
properties (e.g., concentration/viscosity, conductivity), 
to create a jet that rapidly produces particles and fib-
ers (Naqvi et al. 2016). This technology is more efficient 
than conventional microencapsulation methods (Naqvi 
et al. 2016). However, it still faces several challenges. For 
example, the production of some polydisperse microcar-
riers is inevitable, high operating voltage may damage 
cells during encapsulation, and the size distribution of 
produced microcapsules might be wide (Zhao et al. 2017; 
Cheng et  al. 2018). Nevertheless, electrostatic spraying 
requires high operational skills and complicated facilities 
and equipment, which may become another limitation to 
researchers.

Centrifugal microfluidics
A recent report introduced an ultra-simple centrifugal 
microfluidic system that can produce core–shell cap-
sules/fibers (Fig.  3D), generate core–shell capsules/fib-
ers by adjusting the centrifugal force and the viscosity 

of the internal solution (Fig.  3E), and use them for cry-
opreservation and 3D culture of cells (Fig.  3F) (Cheng 
et  al. 2018). Compared with conventional microfluid-
ics, centrifugal microfluidics has unique advantages. 
First, it does not require high operational skills or com-
plex experimental facilities (only a centrifuge). Second, 
the system does not require a carrier phase (oil), which 
avoids washing and possible contamination. Third, the 
centrifugal device has a simple structure, and the solu-
tion and cells can completely enter the collection bath 
under centrifugation to avoid waste. However, this device 
also has some limitations. The size of microspheres and 
microfibers produced cannot be precisely controlled due 
to the alteration of centrifugal force. Therefore, investiga-
tors should choose appropriate encapsulation methods 
based on their specific requirements.

Synergetic ice inhibition
Both the introduction of physical fields in the rewarming 
process and the use of microencapsulation in the preser-
vation process offer new ways to enhance the efficiency 
of cryopreservation. In addition, the development of 
materials with significant ice-inhibition capabilities and 
trehalose delivery technology effectively promotes cell 
preservation. The synergistic ice inhibition combines 
these advanced engineering strategies based on their 
properties, significantly suppressing ice formation dur-
ing cryopreservation and improving the survival rate of 
samples.

Intracellular ice damage is a significant risk factor in 
cell cryopreservation (Poisson et al. 2019), and trehalose 
is an excellent ice-suppressing protective agent that has 
been extensively studied in cell preservation (Sharp et al. 
2013). However, as a non-permeable protective agent, it 
lacks the ability to enter cells. Cheng et al. introduced tre-
halose into pancreatic islet β cells and combined hydro-
gel encapsulation and physical field rewarming to achieve 
efficient preservation of islet β (Cheng et  al. 2019). 
In vivo transplantation experiments showed that the pre-
served cells still had the ability to lower blood glucose 
(Fig. 4 A and B). Based on the synergistic ice inhibition 
approach, Chang et al. prepared  WSe2-PVP nanomateri-
als with ice inhibition and photothermal capabilities for 
cell preservation (Chang et al. 2021). The results showed 
that this strategy significantly increased the cell survival 
rate (Fig. 4 C and D). Cao et al. used the magneto- and 
photothermal dual response capability of GO −  Fe3O4 
nano-composites, combined with hydrogel encapsula-
tion for cryopreservation of stem cells, which signifi-
cantly increased the warming rate and stem cell survival 
rate  (Cao et  al. 2019) (Fig.  4 E and F). To achieve low-
concentration vitrification preservation of mouse prean-
tral follicles, Tian et al. combined hydrogel encapsulation 
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and physical field rewarming, which greatly increased 
the warming rate and inhibited devitrification (Tian et al. 
2022). The results showed that the group with multiple 
physical fields used in concert exhibited higher cell sur-
vival rates and embryo development rates (Fig. 4 G and 

H). In summary, the synergistic ice inhibition strategy 
has shown great potential in inhibiting ice crystal forma-
tion and improving stem cell survival. With the continu-
ous advancement of engineering technology, it is hopeful 

Fig. 3 Cell microencapsulation. A-B Microfluidic system schematic for fabrication of core–shell capsules. A The conventional microfluidic system. 
Reproduced with permission (Huang et al. 2015). Copyright 2015, Wiley‐VCH. B The all-aqueous-phase microfluidic system. Reproduced 
with permission (Zhu et al. 2019). Copyright 2019, American Chemical Society. C The electrostatic spraying system. Reproduced with permission 
(Zhang et al. 2018). Copyright 2018, Royal Society of Chemistry. D-F The centrifugal microfluidic system. D Basic structure of the centrifugal 
microfluidic system. E Viscosity and centrifugal rates. F 3D culture of simple structured cell-laden microcarriers and cell viability tests. 
D-F Reproduced with permission (Cheng et al. 2018). Copyright 2015, Elsevier



Page 9 of 14Wang et al. Cell Regeneration           (2023) 12:28  

Fig. 4 Synergistic ice inhibition for cryopreservation. A-B Cryopreservation of pancreatic islet β cells. A The schematic illustration of encapsulation 
and alginate delivery. B Blood glucose changes after transplantation. (A-B) Reproduced with permission (Cheng et al. 2019). Copyright 2019, 
Wiley–VCH. C-D Synergistic ice inhibition improves cell survival. C Schematic illustrations of synergetic ice inhibition mechanisms. D Different cell 
viability. (C-D) Reproduced with permission (Chang et al. 2021). Copyright 2021, Wiley–VCH. E–F MSCs freezing strategy. E The schematic illustration 
of freezing and rewarming process. F The effect of different physical fields. (E–F) Reproduced with permission (Cao et al. 2019). Copyright 2019, 
American Chemical Society. G-H Vitrification cryopreservation of mouse preantral follicles. G Schematic diagram of follicle cryopreservation. 
H Embryo development rate. G-H Reproduced with permission (Tian et al. 2022). Copyright 2022, Springer Nature
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that biological samples of larger size can be successfully 
preserved.

Stem cell preservation
Stem cells are extensively utilized in cell-based thera-
pies and regenerative medicine due to their remarkable 
potential for self-renewal and differentiation into vari-
ous cell types (Niwa et al. 1998; Dixon et al. 2014). How-
ever, when subjected to long-term culture conditions, 
stem cells can be prone to genotypic drift, chromosomal 
abnormalities, phenotypic instability, and contamination. 
To address this, cryopreservation of stem cells is crucial 
to meet the growing demand for stem cell products (Ben-
David et al. 2011).

In clinical practice, slow freezing is the commonly 
employed method for stem cell preservation. It offers 
simplicity in operation and manageable costs, but it una-
voidably causes ice-induced damage to the cells. Vitrifi-
cation, on the other hand, enables ice-free preservation 
but requires high concentrations of CPAs, which can be 
somewhat cytotoxic (Calabrese et  al. 2010). To enhance 
the efficiency of stem cell cryopreservation, various 
preservation methods have been explored, such as pho-
tothermal rewarming, electromagnetic rewarming, and 
microencapsulation (Table  1). These approaches aim to 
improve the overall preservation outcomes and mini-
mize the adverse effects associated with traditional cryo-
preservation methods.

Photothermal rewarming techniques utilizing materials 
such as soft liquid metal nanoparticles and  Ti3C2Tx (Cao 
et al. 2022) showed significant improvements in preserv-
ing human bone marrow mesenchymal stem cells and 
MSC viability. Laser heating with GNRs achieved high 
survival rates for human umbilical cord blood stem cells 
(Zhan et  al. 2021).  Wang et  al.  achieved efficient elec-
tromagnetic rewarming-assisted vitrification of human 
umbilical cord blood mesenchymal stem cells, a ground-
breaking milestone in stem cell cryopreservation (Wang 
et al. 2016). Hydrogel encapsulation combined with low 
concentration cryoprotectant vitrification demonstrated 
a survival rate of over 80% for porcine adipose stem cells 

(pADSC) (Liu et al. 2018). Ito et al. successfully preserved 
human induced pluripotent stem cells (hiPSCs) on a large 
scale (20  ml) using electromagnetic rewarming, show-
ing promising industrial potential (Ito et al. 2020). These 
advancements highlight the potential of electromagnetic 
and photothermal rewarming in enhancing stem cell 
preservation methods.

In contrast to the aforementioned emerging technolo-
gies, hydrogel encapsulation has found extensive applica-
tions in biomedicine. The use of alginate microcapsules 
for cell encapsulation was first demonstrated in 1980 
(Lim et  al. 1980), and applied to cryopreservation in 
1993 (Dixit et al. 1993). In 1994, microencapsulated islets 
were transplanted into a diabetic patient, successfully 
maintaining normal blood glucose levels for 9  months, 
marking the first clinical use of microencapsulation 
(Soonshiong et  al. 1994). Hydrogel microcapsules offer 
exceptional properties such as ice suppression, high bio-
compatibility, and anti-glassing inhibition, making them 
valuable for stem cell cryopreservation.

Studies have shown that alginate-encapsulated mes-
enchymal stem cells retain high viability and maintain 
their multidirectional differentiation potential after 
cryopreservation (Pravdyuk et  al. 2013). Huang et  al. 
reported successful low concentration cryoprotec-
tive agent (CPA) vitrification of mouse embryonic stem 
cells (mESCs) and human adipose stem cells (hADSC) 
with the assistance of alginate hydrogel microcap-
sules, resulting in a significant increase in cell viability 
(Huang et  al. 2015). Hydrogel microencapsulation has 
also demonstrated efficient cryopreservation of other 
stem cell types, such as cord blood mesenchymal stem 
cells (MSCs) and bone marrow MSCs (Pravdyuk et  al. 
2013; Katsen-Globa et  al. 2014). Moreover, alternative 
hydrogel materials including hyaluronic acid hydrogels 
(Khetan and Corey 2019) and polymeric peptide hydro-
gels (Anderson et al. 2011) have shown great potential in 
stem cell cryopreservation. Microencapsulation serves 
as a foundational technology that can be combined with 
other advanced engineering strategies to achieve optimal 
preservation of stem cells.

Table 1 Application of engineering technology in stem cell preservation

Engineering Strategy Genus Stem cell types Advantages

Photothermal rewarming Human hUC-MSCs High vitality

Electromagnetic rewarming Porcine
Human

pADSCs
hUC-MSCs
hiPSCs

High vitality
Large volume preservation

Microencapsulation Mice
Human

mESCs
hADSA
hBMSCs
hUC-MSCs

High vitality
Large volume preservation
High biocompatibility
Widely used
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Conclusions and perspectives
This review highlights the significant progress that 
has been made in the engineering technology of cryo-
preservation of stem cells. The preservation of stem cell 
function and differentiation ability after long-term cryo-
preservation and resuscitation is critical to realizing the 
clinical applications of stem cell-related tissue engineer-
ing and regenerative medicine. We have discussed the 
primary cryodamage mechanism of stem cells during the 
cooling-warming process of cryopreservation and intro-
duced a series of advanced ice inhibition engineering 
technologies, including photothermal, magnetothermal 
rewarming, cell encapsulation, and synergetic ice inhi-
bition. Efficient stem cell cryopreservation is crucial to 
meeting the urgent needs of subsequent stem cell-related 
regenerative medicine and bioengineering applications 
through the engineering ice inhibition strategy.

In a broader sense, devitrification during stem cell rewarm-
ing remains the main challenge of vitrification preservation. 
At present, advanced engineering strategies for stem cell 
cryopreservation are still under further development. Spe-
cifically, combining multiple advanced engineering tech-
nologies, such as applying nanomaterials with ice inhibition 
and conversion ability (Cao et al. 2022), using magnetother-
mal rewarming microencapsulation technology (Cheng et al. 
2019), or utilizing photo- and magnetoresponsive materials 
that convert light and magnetic energy into heat in combina-
tion with encapsulation technology (Cao et al. 2019), could 
further avoid permeation damage and achieve low-CPA and 
high-grade vitrification of biocomposites.

Although substantial progress has been made, the 
implementation of laboratory-level processes remains 
a significant limitation for clinical applications. Future 
research should focus on the realization of manufac-
turing under relevant Good Manufacturing Practices 
(GMPs) through these strategies to meet current appli-
cation requirements. These engineering strategies offer 
various advantages in stem cell cryopreservation, with 
hydrogel encapsulation playing a significant role in 
industrial applications. Hydrogel scaffolds loaded with 
stem cells have gained prominence in cell therapy, tissue 
engineering, and regenerative medicine. The incorpora-
tion of stem cells into hydrogel scaffolds enhances their 
storage and utilization, especially if the hydrogel scaffolds 
improve cell survival during cryopreservation. Addi-
tionally, for large-volume hydrogel stem cell products, 
the combination with electromagnetic rewarming can 
further enhance the survival rate. Given the irreplace-
able characteristics of stem cells in tissue engineering 
and regenerative medicine, we believe that advanced and 
preferable stem cell cryopreservation engineering strate-
gies will keep abreast of emerging demands, promising a 
thriving future for regenerative medicine.
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