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Abstract 

Cardiac fibrosis is a pathological response characterized by excessive deposition of fibrous connective tissue 
within the heart. It typically occurs following cardiac injuries or diseases. However, the lack of suitable models for dis-
ease modeling and high-throughput drug discovery has hindered the establishment of an effective treatments 
for cardiac fibrosis. The emergence and rapid progress of stem-cell and lineage reprogramming technology offer 
an unprecedented opportunity to develop an improved humanized and patient-specific model for studying cardiac 
fibrosis, providing a platform for screening potential drugs and synchronously elucidating the underlying molecular 
mechanisms. Furthermore, reprogramming cardiac fibroblasts into cardiomyocyte-like cells to reduce scar volume 
and induce myocardial tissue regeneration is a promising approach in treating cardiac fibrosis. In this review, we 
summarize the current advancements in stem cell technologies applied to study cardiac fibrosis and provide insights 
for future investigations into its mechanisms, drug discovery as well as therapy method.
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Background
Cardiac fibrosis is a prevalent pathological alteration 
observed in the advanced stages of most cardiovascular 
diseases (CVDs). This debilitating condition is frequently 
associated with various cardiac disorders, resulting in 
impaired heart function and potentially life-threatening 

complications such as heart failure (Heidenreich et  al. 
2022). Pathological cardiac fibrosis is characterized by 
an excessive accumulation of fibrous tissue in the car-
diac muscle, resulting from an uncontrolled tissue repair 
process primarily orchestrated by myofibroblasts. Myofi-
broblasts differentiating from fibroblasts upon stimula-
tion are distinguished by the presence of smooth muscle 
actin (α-SMA) and increased production of extracellular 
matrix (ECM) proteins (Frangogiannis 2021; Ivey and 
Tallquist 2016; Ma et al. 2018). The process of myocardial 
fibrosis is associated with mechanical stimulation, par-
acrine effects among different cells, and the presence of 
pro-fibrotic factors or molecules derived from the circu-
latory system. Ultimately, this leads to an increased ratio 
of cardiac fibroblasts to cardiomyocytes (Fig. 1). The pro-
gressive accumulation of ECM replaces functional mus-
cle tissues, resulting in adverse cardiac remodeling and 
significantly impairing myocardial contractile function.

Cardiac fibrosis can be attributed to non-infarcted 
injuries, including pressure overload, volume overload, 
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Fig. 1  Challenges in treating cardiac fibrosis and potential solutions with stem cell technology. The red boxes above delineate some of the primary 
challenges encountered in the development of antifibrotic drugs, as discussed in this review. The subsequent blue box elucidates the applications 
of stem cell technology, wherein abundant cardiac cells derived from human pluripotent stem cells can be cultured into diverse structures to meet 
specific demands. Moreover, both the transplantation of products derived from human pluripotent stem cells and the in vivo reprogramming 
of cardiac fibroblasts into cardiomyocytes demonstrate promising potential for cardiac fibrosis therapy, as depicted by the adjacent brown 
and green boxes. TGF-β, transforming growth factor-β; Wnt/β-catenin, Wnt family/β-catenin; NF-κB, nuclear factor kappa B subunit; CF, cardiac 
fibroblasts; CM, cardiomyocytes; hPSC, human pluripotent stem cell; EC, endothelial cells
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metabolic dysfunction, and aging (Biernacka and 
Frangogiannis 2011; Borer et  al. 2002). The activa-
tion of resident interstitial cell populations and other 
cell types such as cardiomyocytes and macrophages 
primarily drive the proliferation of activated myofi-
broblasts after myocardial injury (Brown et  al. 2005; 
Frangogiannis 2012; Fu et  al. 2018; Hinz 2010). The 
induction mechanism of fibrosis signals depends on 
the type of primary myocardial injury. The neurohu-
moral pathway activation directly stimulates fibro-
blasts or influences the immune cell population to 
activate them (Kurisu et  al. 2003). Cytokines and 
growth factors, such as tumor necrosis factor (TNF)-α, 
Interleukin (IL) -1, IL-10, IL-11, transforming growth 
factor β (TGF-β) family members, and platelet-derived 
growth factor (PDGF), are secreted in the cardiac 
interstitium and specifically activating aspects of the 
fibrotic response (Flevaris et  al. 2017; Gallini et  al. 
2016; Hofmann et  al. 2014; Koitabashi et  al. 2011). 
The secreted fibrotic mediators and matrix proteins 
bind to the cell surface receptors of fibroblasts, such 
as cytokine receptors, integrins, syndecans, transduc-
ing intracellular signaling cascades to regulate genes 
involved in ECM synthesis, processing, and metabo-
lism (Berk et al. 2007; Frangogiannis 2017). The endog-
enous pathways involved in the negative regulation of 
fibrosis can protect the myocardium from an excessive 
fibrotic response which are crucial for heart repair. 
However, persistent heart damage disrupts the balance 
between fibrotic repair and its negative feedback reg-
ulation, leading to over-activation of myofibroblasts 
and excessive accumulation of ECM. Currently, heart 
fibrosis therapy faces several challenges (Fig.  1). The 
clinical treatments for cardiac fibrosis, including sur-
gical interventions and pharmacotherapy, demonstrate 
limited efficacy or present insurmountable drawbacks. 
Surgical treatments for the prevention or manage-
ment of advanced cardiac fibrosis encompass valve 
repair and heart transplantation. However, significant 
concerns including high surgical mortality rates, post-
operative infections, and prolonged recovery periods 
cannot be disregarded (Marrouche et al. 2022). More-
over, the scarcity of heart donors and post-transplant 
immune rejection leave patients with cardiac fibrosis 
with few viable options.

Current pharmacological treatments for cardiac fibrosis 
primarily involve general anti-fibrotic drugs and cardiovas-
cular protective medications (Spinale 2007). Pharmacologic 
therapies, such as angiotensin-converting-enzyme inhibi-
tors, statins, aldosterone antagonists, and emerging 
therapies like histone deacetylase inhibitors, have been 
demonstrated to promote ‘reverse remodeling’. This has 
been proven to ameliorate cardiac fibrosis and subsequently 

reduce the burden of ventricular arrhythmia (Dimas et al. 
2011; Massare et al. 2010) as well as the incidence of sud-
den cardiac death (Spinale 2007). However, despite anti-
fibrotic drugs can partially inhibit the further expansion of 
fibrous tissue, their effectiveness in reversing established 
fibrosis is minimal (Zhao et al. 2022). Cardiovascular pro-
tective medications, such as beta receptor blockers and 
renin–angiotensin–aldosterone system (RAAS) inhibitors, 
can enhance cardiac function. However, they are unable to 
reverse existing fibrosis. Moreover, long-term medication 
usage may bring about drug tolerance and adverse effects 
(Rios et al. 2020). Currently, numerous small molecules or 
compounds are undergoing clinical trials for fibrosis treat-
ment. However, most of them primarily focus on idiopathic 
pulmonary fibrosis, non-alcoholic steatohepatitis, or mye-
lofibrosis (Zhao et  al. 2022). Considering the presence of 
organ heterogeneity, the developments of specific drugs 
targeting myocardial fibrosis are significantly limited.

Obtaining human autologous heart cells poses a sig-
nificant challenge (Smits et  al. 2009), thus the utiliza-
tion of animal models such as mice and rats is commonly 
favored in cardiac fibrosis research (Savoji et  al. 2019). 
However, notable disparities exist between the physi-
ological characteristics of human and mouse hearts, and 
animal models are unsuitable for high-throughput drug 
screening due to intricate in vivo pharmacokinetics and 
economic limitations. Other cell models, like immortal-
ized human fibroblast lines, have limitations including 
a singular cell type and lack of structural organization. 
Additionally, their short viability and dependence on 
experimenters greatly impede further investigation 
(Eglen and Reisine 2011). Consequently, the development 
of antifibrotic drugs targeting heart disease progresses 
at a slower pace compared to fields like oncology and 
metabolism due to the absence of appropriate human 
cardiac fibrosis models.

Key regulators of cardiac fibrosis
Cardiac fibrosis is characterized by the excessive accu-
mulation of extracellular matrix proteins by cardiac 
fibroblasts and myofibroblasts, serving as a prominent 
hallmark in various cardiac disorders, including arrhyth-
mia, hypertrophy, and heart failure. This pathological 
process is triggered by a range of stimuli, such as myo-
cardial injury, inflammatory processes, and mechanical 
strain. The fibrogenesis cascade is tightly regulated by 
diverse signaling pathways and various cell types (Fig. 2).

The mechanosensitive activation of fibroblasts may 
have evolved as a protective mechanism to preserve 
tissue integrity, mitigating the potentially devastating 
effects of mechanical forces on tissue structure. However, 
within the cardiac context, prolonged mechanical tension 
can lead to sustained fibroblast activation and excessive 
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collagen deposition, ultimately resulting in adverse 
alterations to myocardial structure and impaired func-
tionality. Mechanical stress can initiate fibroblast activa-
tion through various mechanisms, including integrins 
(MacKenna et  al. 1998), mechanosensitive ion channels 
(Rahaman et al. 2014), and G-protein coupled receptors 
(GPCRs) (Barnes et al. 2018).

The activation of GPCRs can initiate signaling path-
ways that coordinate the fibroblast response to mechan-
ical stress. These pathways involve crucial components 
such as focal adhesion kinase (FAK) (Leask 2013), 
mitogen-activated protein kinase (MAPK) (Wang et al. 

2003), RhoA/Rho kinase (ROCK) (Shimizu and Liao 
2016), and phosphoinositide 3-kinase (PI3K) signaling 
(Frangogiannis 2021). The presence of intracellular cal-
cium ions (Ca2+) plays a pivotal role in initiating car-
diac fibrogenesis in response to mechanical stress (Lin 
et  al. 2019; Yue et  al. 2013; Du et  al. 2010). Transient 
receptor potential (TRP) channels, renowned for their 
distinctive characteristics, have garnered prominence 
as the primary ion channels responsible for mediating 
Ca2+ signals in cardiac fibroblasts. There is an increas-
ing body of evidence suggesting the therapeutic poten-
tial of numerous TRP channels as targets for drug 
interventions. Nevertheless, a more comprehensive 

Fig. 2  Major signaling pathways involved in cardiac fibrosis. Mechanosensitive pathways play a pivotal role in activating fibroblasts during various 
cardiac pathological conditions. Integrins, mechanosensitive ion channels, and activation of G-protein coupled receptors all initiate signaling 
pathways, including FAK, MAPK, and PI-3 K, which mediate the response of fibroblasts to mechanical stress. Secreted signals from diverse cell types 
have profound effects on phenotypic changes. In response to injury, the heart releases a wide range of cellular factors that trigger and exacerbate 
the phenotype in a paracrine manner. These secreted factors are implicated in various outcomes such as fibrosis, myofibroblast activation, 
collagen synthesis, calcification, hypertrophy, and inflammation. TGF-β: transforming growth factor-β; AT1R, type 1 angiotensin II receptor; ERK; 
extracellular-signal-regulated kinase; FAK, focal adhesion kinase; IL-11RA, IL-11 receptor subunit-α; MAPK, mitogen-activated protein kinase; MR, 
mineralocorticoid receptor; PI3K, phosphoinositide 3-kinase; TAK1; TGF-beta activated kinase 1, TGFβ-activated kinase 1; TGFβR1, TGFβ receptor type 
1. PAK, p21-Activated kinases; NF-κB, The nuclear factor-kappaB; Dvl, Dishevelled; LRP5/6, low-density lipoprotein receptor-related protein; GSK3, 
glycogen synthase kinase 3; APC, adenomatous polyposis coli; CK1, casein kinase 1; TCF, T cell Factor
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comprehension of the functions of TRP channels in the 
heart is indispensable (Feng et al. 2019).

Following myocardial damage, a plethora of signaling 
molecules such as chemokines, cytokines and growth 
factors are released, triggering the activation of cardiac 
fibroblasts through diverse pathways. The RAAS is acti-
vated during the process of cardiac fibrosis and interacts 
with pathways that contribute to fibrosis (Xu et al. 2010). 
Angiotensin II (Ang II) plays a pivotal role in the transfor-
mation of cardiac fibroblasts into myofibroblasts by bind-
ing to the Ang II receptor type 1 (AT1R) (Kawano et al. 
2000). TGF-β activates fibroblasts through both canoni-
cal SMAD2/3 signaling and non-canonical TGF-beta 
activated kinase 1(TAK1)-mediated p38 phosphorylation 
(Frangogiannis 2022; Kim et al. 2018; Hu et al. 2018). In 
summary, the TGF-β signaling pathway assumes a central 
role in cardiac fibroblast differentiation and the devel-
opment of cardiac fibrosis (Fig.  2). Furthermore, TGF-
β1 signaling induces an upregulation of IL-11 secretion 
in human fibroblasts, while in  vivo studies with global 
IL-11Ra loss demonstrate reduced interstitial fibrotic 
remodeling under pressure overload conditions. The 
impact of IL-11 on fibroblast activation involves post-
transcriptional mechanisms mediated by extracellular-
signal-regulated kinase (ERK) signaling (Liu et al. 2020).

In mammals, the Wnt signaling pathway plays a cru-
cial role in embryonic development but remains inac-
tive in adult tissues with low turnover, such as the heart 
(Bastakoty and Young 2016; Aisagbonhi et al. 2011). The 
Wnt/β-catenin pathway inhibits the destruction complex 
composed of Axin complex, which includes casein kinase 
1 (CK1), adenomatous polyposis coli (APC), and glyco-
gen synthase kinase 3 (GSK3), leading to the accumula-
tion of β-catenin (Frangogiannis 2022). Furthermore, in 
murine subjects, CFs β-catenin knockout reduces cardiac 
fibrosis by downregulating collagen type I alpha 1 chain 
(COL1A1), collagen type III alpha 1 chain (COL3A1), 
and periostin expression levels (Xiang et  al. 2017). Tar-
geting these pathways therapeutically has garnered sig-
nificant scientific and clinical interest.

Stem cells provide optimal in vitro models for cardiac 
fibrosis
Human pluripotent stem cells (hPSCs), including human 
embryonic stem cells (hESCs) and human induced pluri-
potent stem cells (hiPSCs), have substantially expanded 
the availability of human cells for modeling cardiac fibro-
sis and discovering drugs due to their ability to unlim-
itedly self-renew and differentiate into types of cells 
within the body (Parrotta et al. 2020). The in vitro cardiac 
fibrosis model using hPSCs-derived quiescent cardiac 
fibroblasts has reported the responsiveness to fibrotic 
stimulation (Zhang et  al. 2019). However, a 2D in  vitro 

system comprising only fibroblasts cannot precisely 
model disease context of the fibrotic heart, where con-
tractile cardiomyocytes and fibroblasts are closely con-
nected to form the 3D functional tissue.

Fortunately, recent advancements in stem cell and tis-
sue engineering technology have significantly facilitated 
the development of 3D systems at the tissue level. This 
progress is expected to greatly enhance the construction 
of more reliable cardiac fibrosis models (Fig.  3). There 
exist substantial differences in both structure and physio-
logical properties between 2 and 3D cardiac cell cultures 
(Pontes Soares et  al. 2012), which implies that different 
results can be obtained from either a 2D or a 3D mod-
eling approach. For examples, the cardiac cells grown in 
a 3D context exhibit smaller size, increased intercellular 
junctions, and less prominent cytoskeletal network com-
pared to those cultured in a 2D context. Conversely, the 
cardiomyocytes cultured in a 2D environment demon-
strate underdeveloped excitation–contraction coupling, 
slow action potential conduction, and inefficient energy 
conversion (Pontes Soares et  al. 2012; Abbott 2003). 
Furthermore, studies have indicated that cells cultured 
in a 3D setting display reduced sensitivity to drugs and 
mechanical stimuli as well as decreased resistance to 
apoptotic signals (Li et  al. 2016; Li et  al. 2008; Bokhari 
et al. 2007).

Therefore, employing 3D models offers significant 
advantages over traditional 2D models for investigating 
cardiac fibrosis.

The 3D structure closely resembles an actual patient’s 
heart, enabling comprehensive observations of mechani-
cal stimulation on cardiac fibrosis. Various devices 
have been developed to mimic different forms of force 
(Occhetta et  al. 2018; Kong et  al. 2019; Rogers et  al. 
2019; Bracco Gartner et  al. 2023), thereby accelerating 
researches on the impact of mechanical forces on car-
diac fibrosis. Moreover, cardiac cells differentiated from 
hPSCs cultured in 3D models exhibit a higher level of 
maturity compared to those in 2D models (Lange et  al. 
2021) This is attributed to the presence of intercellular 
interactions, ECM interactions, and microenvironmental 
stimuli.

Spheroid cultures have been extensively studied in 
CVDs research for their enhanced integration of bio-
chemical and physiological characteristics, which are 
similar to real heart within a well-defined 3D architec-
tural microenvironment when compared to 2D mon-
olayer cultures (Beauchamp et  al. 2015). The spheroids 
can be derived from various cell types, including both 
somatic and stem/progenitor cells, as well as resident 
cardiac stromal cells. Despite their simplicity, these sphe-
roids offer valuable preliminary models for investigating 
complex pathological conditions such as tissue stiffening 
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and fibrosis (Edmondson et  al. 2014; Polonchuk et  al. 
2017; Sacchi et  al. 2020; Garoffolo et  al. 2022).  Cardiac 
organoid represents a more complex form of 3D micro-
tissue, which are self-assembling structures of cardiac 
cell types obtained from the proliferation and differen-
tiation of hPSCs. The cardiac organoids are attempted 
to replicate cell–cell interaction, cell-ECM interaction, 
and organ architecture and function at a microscale 
level, as proximal as possible to the in  vivo histological 
features (Nugraha et  al. 2019; Lewis-Israeli et  al. 2021). 
More significantly, cardiac organoids serve as a crucial 
model for the discovery and evaluation of novel drugs 
and treatments, transforming "personalized medicine" 
from bench to bed. The self-organizing nature of car-
diac organoids enables considerably higher throughput 
compared to engineered heart tissues (EHTs) or animal 
models in drug screening owing to their simplified fab-
rication process and smaller cell count per organoid 
(~ 5,000 cells) (Drakhlis et  al. 2021). In addition, orga-
noids enable personalized medicine approaches using the 
hiPSCs with patient’s genetic background and to evalu-
ate drug effects on human cardiac development and gene 

expression pattern. Based on these advantages, cardiac 
organoids are already used in drug testing for CVDs 
(Lee et al. 2020; Paik et al. 2020). Mi-Ok Lee et al. estab-
lished an in vitro 3D microtissues derived from hESCs to 
model cardiac fibrosis, they demonstrated that the addi-
tion of appropriate amount of CD44+ human mesenchy-
mal stem cells (hMSCs) (about 40%) derived from hESCs 
better mimics the pathological process of cardiac fibro-
sis (Lee et al. 2019). Similarly, the cardiac fibrosis model 
constructed by Iseoka et  al. demonstrated that cardiac 
tissues comprising 50%–70% cardiomyocytes exhibited 
enhanced responsiveness to fibrotic stimulation, thereby 
enabling precise screening of anti-fibrotic drugs (Iseoka 
et al. 2021).

Despite the rapid advancements in this field, there is 
still a lack of highly efficient and reproducible methods 
for the generation of cardiac organoids and universally 
applicable culture conditions for all cardiac cell types. 
The generation of cardiac organoids has not yet under-
gone the sequential processes of looping, ballooning, 
trabeculation, and compaction, which are crucial for 
chamber formation in a native heart (Kim et  al. 2021). 

Fig. 3  Development of stem cell-based cardiac fibrosis models. The advancement of stem cell technology has facilitated the establishment 
of models for cardiac fibrosis in the past two decades (Drakhlis et al. 2021; Song et al. 2021; Silva et al. 2021; Richards et al. 2020; Bao et al. 2017; Iyer 
et al. 2015; Witty et al. 2014; Lancaster and Knoblich 2014; Thavandiran et al. 2013; Nunes et al. 2013; Kensah et al. 2013; Tulloch et al. 2011; Schaaf 
et al. 2011; Yu et al. 2007; Takahashi et al. 2007; Takahashi and Yamanaka 2006). Due to the self-renewal and pluripotency characteristics of induced 
pluripotent stem cells, it has become possible to produce target cardiac cells on a large scale in vitro. Building upon this progress, the creation 
of three-dimensional structures that closely resemble an authentic heart has now become a reality. Oct3/4: organic cation/carnitine transporter 
3/4; Sox2: SRY-box transcription factor 2; c-Myc: transcriptional regulator Myc-like; Klf4:KLF transcription factor 4; NANOG: Nanog homeobox; LIN28: 
Protein lin-28; CFs: cardiac fibroblasts; hPSCs: human pluripotent stem cells; hEHT: human engineered heart tissue; hPSC-ECs: human pluripotent 
stem cell derived endocardial cells; hPSC-CMs: human pluripotent stem cell derived cardiomyocytes; hPSC-CFs: human pluripotent stem cell 
derived cardiac fibroblasts
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Moreover, current cardiac organoids lack spatial organi-
zation and perfusable blood vessels, limiting their size 
and posing challenges for long-term maintenance as they 
grow larger. Additionally, the pumping function mediated 
through muscle contraction and vascular transportation 
has not been observed thus far (Zhao et al. 2019; Zhang 
et al. 2021; Feng et al. 2022). Therefore, cardiac organoids 
derived from hPSCs exhibit characteristics more remi-
niscent of fetal hearts rather than adult hearts.

Although current cardiac organoids are unlikely to 
fully replace animal models in preclinical studies, ongo-
ing efforts will help bridge the gap between in  vivo 
and in vitro applications in the future (Kim et al. 2022; 
Sahara 2023).

Stem cell therapy for treating cardiac fibrosis
In recent years, stem cell technology has provided a ray 
of hope for the treatment of numerous ‘intractable dis-
eases’, and its remarkable efficacy in combating heart 
diseases has equally demonstrated the immense poten-
tial of stem cells in addressing cardiac conditions. Given 
that cardiomyocytes are terminally differentiated, any 
damage incurred results in permanent loss and subse-
quent replacement by scar tissue within the damaged 
myocardium. This process often ends with complica-
tions such as heart failure and malignant arrhythmias, 
significantly impacting overall quality of life. Research-
ers have harnessed the regenerative potential of different 
types of stem cells, such as hMSCs, hESCs and hiPSCs, 
to target the damaged heart tissue and promote its repair 
and regeneration. One of the primary mechanisms by 
which stem cells combat cardiac fibrosis is their capac-
ity to differentiate into specialized cardiac cells. These 
cellular components play crucial roles in the regenera-
tion of damaged myocardial tissue and restoration of car-
diac function (Zhao et al. 2022). The secretion of various 
growth factors and cytokines by stem cells further facili-
tates the recruitment of endogenous repairing cells and 
stimulates the formation of new blood vessels, thereby 
promoting the hemodynamics of the heart (Ishigami 
et al. 2018; Quijada and Sussman 2014).

MSCs possess a range of characteristics, including 
anti-fibrotic, anti-inflammatory, anti-apoptotic, immune-
modulatory, and pro-angiogenic properties through 
secreting various molecules with anti-inflammatory 
and immune-modulatory activities, thereby promoting 
the regeneration of damaged heart tissues (Razeghian-
Jahromi et  al. 2021). Extensive preclinical and clinical 
investigations have demonstrated the potential of MSCs 
transplantation in offering protection against diverse 
CVDs such as acute myocardial infarction (MI), both 
ischemic and non-ischemic heart failure, chemotherapy-
induced cardiomyopathy, and myocarditis. Notably, these 

reports and clinical trials over the past decades have 
indicated limited cardiomyogenic potential and modest 
improvement in cardiac function for ischemic cardio-
myopathy of MSCs based therapy (Silva et al. 2005; Hare 
et al. 2012; Mathiasen et al. 2015).

hPSCs possess clonogenic, self-renewing, and pluri-
potent properties, making them highly expandable and 
capable of in  vitro differentiation into cardiomyocytes 
(hPSC-CMs). This feature illustrates the potential to 
obtain abundant cardiomyocytes for transplantation   
(Chen et  al. 2023). Thus, hPSCs also serve as promis-
ing resources for the treatment of myocardial fibrosis 
(Fig.  1). The transplantation of hPSC-CMs holds the 
potential to directly enhance cardiac function in indi-
viduals with reduced fibrosis and increased vascular 
density. Additionally, hPSC-CMs can enhance cardiac 
tissue regeneration and repair processes by secreting 
growth factors, cytokines, and other signaling mol-
ecules (Dessouki et  al. 2020; Wu et  al. 2020). How-
ever, the limited engraftment rate of transplanted cells 
remains a significant hindrance to the effectiveness of 
this cell therapy (Ishigami et  al. 2018; Qu et  al. 1998; 
Tang et  al. 2010). Safety concerns such as arrhythmias 
and potential tumorigenesis have been reported in 
hPSC-CMs-based therapy (Chong et al. 2014).

The ideal approach for hPSC-CMs transplantation has 
been extensively investigated through numerous studies, 
encompassing three distinct methodologies: coronary 
artery injection, myocardial injection of cell sheets, and 
utilization of 3D patches. However, the direct injection 
of dissociated single cells into the myocardium or coro-
nary artery yields a transplantation success rate below 
10% (Hsiao et  al. 2013; Behfar et  al. 2014). Therefore, 
several studies have been dedicated to the development 
of innovative injection techniques aimed at raising cell 
retention rates, such as co-transplantation with human 
MSCs that release anti-apoptotic factors (Templin et  al. 
2012). In addition, recent years have witnessed the devel-
opment of various novel tissue engineering strategies 
aimed at enhancing cell transport in myocardial regen-
eration therapy. Engineered cell sheets, as compared to 
direct injection, owe the advantage of delivering a large 
number of cells to damaged tissues without engender-
ing transplanted cell loss or causing damage to the host 
myocardium. Moreover, the application of hPSC-CMs 
embedded in 3D patches promotes their continuous 
maturation and might provide further value as a poten-
tial therapy (Zhang et al. 2013; Sun and Nunes 2017; Gao 
et al. 2018).

Recently, researchers have been investigating multiple 
approaches to enhance the engraftment of hPSC-CMs. 
Notably, the Ye laboratory has reported the promotion 
of thymosin β4 (Tβ4) in the implantation of hPSC-CMs 
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in a subacute myocardial infarction pig model (Tan et al. 
2021). They have confirmed that combination therapy 
with Tβ4 can significantly enhance hPSC-CMs implan-
tation and angiogenesis, promote the proliferation of 
endogenous cardiomyocytes and endothelial cells and 
alleviate adverse cardiac remodeling. Importantly, no 
safety concerns such as ventricular arrhythmias or tumor 
formation were observed. Zhao et al. also demonstrated 
that over-expression of Cyclin D2 in hPSC-CMs enhances 
heart function, reduces fibrotic scar size and ventricu-
lar hypertrophy, and decreases cardiomyocyte apoptosis 
with increased vascular density (Zhao et al. 2021).

Considering that cardiac fibrosis commonly accom-
panies the majority of CVDs, the clinical application of 
hPSC-CMs holds great promise in treating these dis-
eases. The immense potential of stem cell-based therapy 
for CVDs ensures that both preclinical and clinical inves-
tigations will continue unabated. At present, there are 
four ongoing clinical trials utilizing hPSC-CMs to treat 
patients with CVDs (Sridharan et al. 2023).

Cell reprogramming technique for treating cardiac fibrosis
Given that direct reprogramming can generate repro-
grammed cells in situ in diseased organs of animal mod-
els, its utilization may overcome technical challenges 
associated with iPSC technology, such as in vitro repro-
gramming and large-scale amplification. Cardiac fibro-
blasts have been the primary source for cardiomyocyte 
conversion due to their activation and demonstrated con-
tribution to fibrosis and scar formation following heart 
injury. The in vivo reprogramming of cardiac fibroblasts 
has resulted in the replenishment of cardiomyocyte 
pools and reduced scar formation, suggesting a poten-
tial pathway for treating cardiac fibrosis. Research has 
indicated that by inducing trans-differentiation of fibro-
blasts into various cell types, including cardiomyocytes 
(Cao et al. 2016) or endothelial cells (Han et al. 2021; Lee 
et al. 2017), it is possible to mitigate the accumulation of 
fibrous tissue and facilitate tissue repair (Fig. 4).

This trans-differentiation process can be achieved 
through various methods, including the utilization of 
transcription factors (Zhang et  al. 2017), gene editing 
tools (Lee et  al. 2017), or small molecules (Cao et  al. 
2016). The first approach introduced involves coaxing 
fibroblasts to undergo in vitro reprogramming into car-
diomyocyte-like cells, either by redirecting incompletely 
reprogrammed cells towards a cardiac phenotype using 
the inherent reprogramming strategy or by introducing 
the three transcription factors GATA binding protein 4 
(GATA4), myocyte enhancer factor 2C (MEF2C), and 
T-box transcription factor 5 (TBX5) (GMT) into cul-
tured fibroblasts (Efe et al. 2011; Ieda et al. 2010). Subse-
quently, efforts were made to investigate the acquisition 

of reprogrammed and authentic cardiomyocytes in vivo. 
Jayawardena et  al. initially demonstrated successful 
conversion of cardiac fibroblasts into cardiomyocytes 
within scarred and peri-infarct areas of mouse hearts 
through direct lentiviral delivery of miRNAs (miR-
NAs-1, 133, 208, and 499), with enhanced reprogram-
ming effects observed when combined with Janus kinase 
(JAK) inhibitor I treatment (Jayawardena et al. 2012). In 
a study leaded by Dr. Qian, the researchers discovered 
that fibroblasts undergoing proliferation were directly 
reprogrammed into relatively mature cardiomyocytes 
with authentic action potentials (APs) and contractile 
ability through over-expression of GMT mediated by 
a retroviral system. This was confirmed by strict line-
age tracing experiments. Additionally, they reported an 
enhanced reprogramming efficiency of 12% compared to 
the typical 5–10% in vitro efficiency. The reprogrammed 
cardiomyocytes exhibited similar transcriptional profiles 
and physiological features as endogenous adult cardio-
myocytes, suggesting the influence of both cellular and 
extracellular environments. Importantly, following the 
delivery of GMT for 8–12 weeks in post-MI mice, new 
cardiomyocytes were observed in scar areas, aligning 
with significant and long-lasting improvements in car-
diac function and reduced scar size as demonstrated 
by echocardiography and Magnetic Resonance Imaging 
(MRI) (Qian et al. 2012).

Given the presence of species variations, more intri-
cate reprogramming cocktails were required for human 
cardiac reprogramming. Fu et al. employed GMT in con-
junction with estrogen-related receptor gamma (ESSRG), 
mesoderm posterior bHLH transcription factor 1 
(MESP1), myocardin (MYOCD), and zinc finger protein, 
multitype 2 (ZEPM2) to convert human fibroblasts into 
human induced cardiomyocyte-like cells (hiCMs) (Fu 
et al. 2013), while Wada et al. demonstrated that a com-
bination of GMT along with MESP1 and MYOCD was 
sufficient for hiCM conversion in coculture with murine 
cardiomyocytes (Wada et al. 2013). In recent years, Zhou 
et al. developed an optimized protocol using MGT plus 
miR133 based on single-cell transcriptomic analysis, 
which achieved an efficiency of 40%-60% in generating 
hiCMs (Garbutt et al. 2020; Zhou et al. 2019).

Although new reprogramming protocols have been 
investigated to enhance the efficiency of reprogram-
ming, cardiac cells generated through genetic meth-
ods exhibit heterogeneity and a low proportion of truly 
functional hiCMs that spontaneously beat and display 
cardiac Aps (Xie et  al. 2022). In comparison to viral-
based gene delivery methods, small molecules offer the 
advantage of being non-immunogenic and cost-effective, 
along with easily standardized protocols. Our research 
group has successfully reprogrammed human fibroblasts 
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into functional cardiomyocytes (chemically induced car-
diomyocytes, ciCMs) using a combination of nine small 
molecules: CHIR99021, A83-01, BIX01294, AS8351, SC1, 
Y-27632, OAC2, together with two inhibitors of plate-
let-derived growth factor receptors, namely SU16F and 
JNJ10198409 (Cao et  al. 2016). The underlying mecha-
nism is that 9C can induce an epigenetic state charac-
terized by open chromatin structure in somatic cells, 
enabling them to respond to external cardiogenic sig-
nals (Fig. 4). Moreover, the transplantation of 9C-treated 
human foreskin fibroblasts into the infarcted hearts of 
immunodeficient mice resulted in robust expression of 
cardiac markers, well-organized sarcomeres, and partial 
re-muscularization within the infarcted area. The ciCMs 
closely resembled human cardiomyocytes in terms of 

transcriptome, epigenetic features, and electrophysiolog-
ical properties. This discovery establishes a foundation 
for potential in situ repair of the heart through targeted 
modulation of endogenous cardiac fibroblasts using small 
molecules.

Using similar strategy, we have recently reported the 
generation of chemically induced cardiovascular progeni-
tor cells (ciCPCs) from mouse and human fibroblasts, 
which possess multipotency to differentiate into vari-
ous types of cardiovascular cells using a transgene-free 
reprogramming approach involving six small molecules: 
CHIR99021, A83-01, GSK126, Forskolin (an adenylyl 
cyclase activator), CTPB (a P300 histone acetyltrans-
ferase activator), and AM580 (a RARα activator) (Wang 
et al. 2022). Subsequent transplantation of these ciCPCs 

Fig. 4  Cell reprogramming technique for cardiac fibrosis therapy. Cardiac fibroblasts could be directly reprogrammed to cardiomyocyte-like cells 
through microRNAs, transcription factors and small molecules in vivo to achieve in situ cardiac tissue repair. The microRNAs and transcription factors 
switch the cell fate through limiting the original lineage specific genes expression or promoting the target lineage specific genes expression, 
and the small molecules function by promoting the chromatin opening at lineage specific loci. Cardiac fibroblasts could also be indirectly 
reprogrammed to cardiac progenitor cells through small molecules in vitro, which can be used for transplantation or differentiate into various 
cardiac cell types in a large scale for cell transplantation, disease modeling, and biobanking of patient-specific samples. CFs, cardiac fibroblasts; 
miRNAs, microRNAs; iCMs, induced cardiomyocyte-like cells; ciCPCs, chemically induced cardiovascular progenitor cells; ECs, endothelia cells; CMs, 
cardiomyocytes; SMCs, smooth muscle cells
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into infarcted mouse hearts resulted in improved animal 
survival and cardiac function for up to 13  weeks post-
infarction. Furthermore, considering the autologous 
nature of ciCPCs, these infinitely renewable cardiovascu-
lar cells offer the potential for biobanking patient-specific 
stem cells, thereby playing a crucial role in personalized 
cell therapy and precise drug screening targeting cardiac 
fibrosis.

Despite the considerable potential of stem cell therapy 
in addressing cardiac fibrosis, there are still several obsta-
cles need to be overcome. These challenges encompass 
the selection of appropriate stem cells sources, concerns 
regarding biosafety during cell transplantation, and the 
necessity to improve cell survival and retention rates, 
among other factors. The advantages and disadvantages 
of stem cell transplantation and cell reprogramming 
for cardiac fibrosis therapy are summarized in Table  1. 
Moreover, in order to develop more effective and tar-
geted treatment approaches, it is crucial to gain a com-
prehensive understanding of the intricate pathological 
mechanisms involved in fibrosis.

Conclusions and perspectives
In summary, stem cell therapy for cardiac fibrosis is an 
advancing field with promising prospects for the future. 
Ongoing research and technological advancements 
are propelling these therapeutic approaches towards 
potential success. However, several challenges persist 
in current stem cell treatments. Further investigation is 
required to address issues such as the selection of appro-
priate stem cell sources, biosafety concerns, and the fea-
sibility to monitor treatment efficacy. Moreover, ensuring 
the successful engraftment and survival of transplanted 
stem cells into the heart remains to be tackled. Many 
transplanted cells do not exhibit long-term viability or 
fail to differentiate into functional cardiac cells, thereby 
impeding the overall effectiveness of this therapy. To 
ensure the safety and efficient implementation of these 
stem cell-based approaches, rigorous clinical studies and 

repeated validation are indispensable. Efforts are under-
way to establish a high-throughput drug screening plat-
form for the development of novel therapies. Striking a 
balance between complexity and user-friendliness is piv-
otal for this platform. Through comprehensive research 
and validation, we can surmount these challenges and 
unlock the full potential of stem cell therapy for cardiac 
fibrosis in the future.
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Table 1  The advantages and disadvantages in stem cell transplantation and in vivo cell reprograming for cardiac fibrosis therapy

Therapy pathway Advantages Disadvantages References

Stem cell transplantation 1). Diverse sources of stem cells
2). Precision therapy of injury heart
3). Exhibits a dose-dependent function
4). Induce both muscularization 
and vascularization in the injured heart

1). Immune rejection
2). Biosafety concerns
3). Adverse cardiac effects (e.g., arrhythmias)
4). Low immaturity of transplanted cardiac 
myocytes
5). Low retention rate of transplanted cells

Lou et al. 2023
Querdel et al. 2021
Gao et al. 2018
Liu et al. 2018

In vivo Cell reprograming 1). In situ repair of the injured heart
2). Cardiac fibroblast-specific
3). Reduce cardiac fibrosis and generate 
new cardiomyocytes in the same time

1). Low efficiency and high cost
2). Biosafety concerns
3). Technical complexity
4). Emerging mutability

Tang et al. 2022
Garry et al. 2021
Muraoka et al. 2019
Miyamoto et al. 2018
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