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Pluripotency and its layers of complexity
Jolene Ooi1,2 and Pentao Liu1*
Abstract

Pluripotency is depicted by a self-renewing state that can competently differentiate to form the three germ layers.
Different stages of early murine development can be captured on a petri dish, delineating a spectrum of
pluripotent states, ranging from embryonic stem cells, embryonic germ cells to epiblast stem cells. Anomalous cell
populations displaying signs of pluripotency have also been uncovered, from the isolation of embryonic carcinoma
cells to the derivation of induced pluripotent stem cells. Gaining insight into the molecular circuitry within these
cell types enlightens us about the significance and contribution of each stage, hence deepening our understanding
of vertebrate development. In this review, we aim to describe experimental milestones that led to the
understanding of embryonic development and the conception of pluripotency. We also discuss attempts at
exploring the realm of pluripotency with the identification of pluripotent stem cells within mouse teratocarcinomas
and embryos, and the generation of pluripotent cells through nuclear reprogramming. In conclusion, we illustrate
pluripotent cells derived from other organisms, including human derivatives, and describe current paradigms in the
comprehension of human pluripotency.
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Review
Introduction
Pluripotency is denoted by the capacity of a self-
renewing cell to develop into the three germ layers. The
conception of pluripotency emerged in the Classical
Greek period where rudimentary methods were
employed to examine the development of organs within
chick embryos [1]. These observations were left unex-
plored for two thousand years and awareness was
rekindled in the Renaissance period where the invention
of the microscope enhanced the resolution of developing
embryos. This elicited the establishment of several land-
mark discoveries and escalated our understanding of
vertebrate developmental processes.
The first testimony of pluripotency on a petri dish was

portrayed using inbred strains of mice. Spontaneous
incidences of teratocarinomas arose at low frequencies
in 129 strain of mice [2]. This led to the isolation of
pluripotent stem cells that were able to regenerate
tumours consisting of the three germ layers [3]. Subsets
of pluripotent cell populations came in quick succession,
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reproduction in any medium, provided the or
where various cell types within the mouse embryo were
isolated and snapshots of distinct developmental stages
were captured [4-9]. Other than naturally occurring
instances in normal development, artificial states that
are reflective of pluripotency have been accomplished.
Cells from developing Rana pipiens embryos were
demonstrated to undergo nuclear transplantation and
revert to a primitive state capable of developing into an
entire organism [10]. This highlighted the capacity of a
non-pluripotent cell to reset its epigenetic marks and
convert to a pluripotent derivative. Termed as nuclear
reprogramming, these findings were extended in mice
and further exemplified in alternative methods [11-14].
The easy manipulation and cultivation of mouse pluri-

potent stem cells have provided a convenient platform
to study the independent developmental stages. Further-
more, comparison of these pluripotent states and their
necessary environmental milieu for sustenance provides
indications of developmental cues (reviewed by [15]).
Pluripotent stem cells from various non-rodent and pri-
mate species have been achieved either directly from
embryos or through nuclear reprogramming, but none
are truly reflective of mouse embryonic stem cells that
display germline competence (reviewed by Nichols and
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Smith, 2009c) [16]. Recent studies suggest that conven-
tional human pluripotent cells resemble mouse epiblast
stem cells more closely than mouse embryonic stem
cells [9], indicating the possibility of a primitive subset
of human pluripotent stem cells which have not been
clearly delineated.
This review aims to address these concerns by first de-

scribing the milestones established through the study of
vertebrate development and pluripotency. This will be
followed by the illustration of extrinsic signals and mo-
lecular pathways associated to pluripotency. By way of
introducing pluripotent stem cells achieved from alter-
native organisms, we compare the differences between
human and mouse pluripotent stem cells and describe re-
cent inferences on a distinct state of human pluripotency.

History of vertebrate development
The development of vertebrates involves the orchestra-
tion of a series of steps in a tightly regulated process that
determines cell lineage specification into endodermal,
ectodermal and mesodermal derivatives. Imprinted into
the operational dogma of modern developmental biol-
ogy, conception of these notions has been accompanied
by a history of key observations and controversies.
Originating from examinations of the chick embryo, Ar-

istotle witnessed the development of a palpitating heart,
head and eyes, laying ink on a clean palette of embryology
[1]. With the proposition of epigenesis, he described de-
velopment as a sequential process involving the formation
of organs to construct a complete organism. Almost two
thousand years after these initial recordings, the field was
reawakened and the mechanisms behind these phenom-
ena were questioned. To examine the root of develop-
ment, Girolamo Fibrici performed dissections on cadavers
of pregnant mammals, providing comparisons between
anatomical structures of uteri [17]. This work was
advanced by his student William Harvey who hypothe-
sised the presence of female germ cells within uteri that
hold the capacity to constitute a new organism ([18]). Fur-
thermore, identification of budding and subdivision dur-
ing primary stages of embryonic development of the chick
led him to be a strong advocate of epigenesis. These find-
ings revived Aristotle’s theory and provoked collision
against preformation views. Preformationism was held as
the dominant perception of development, and describes
the existence of a miniature organism that expands with-
out increasing complexity within the germ cell. Although
epigenesis perceptions were resurrected, it was not
received warmly. Transformation of the field of develop-
ment biology was invoked by subsequent experiments led
by Caspar Frederich Wolff and Karl Ernst von Baer. Using
plants as a surrogate organism for study, Wolff explained
the ability of differentiated plant root to regenerate a new
organism. This study was traversed to chick embryos
where Wolff studied the formation of embryonic kidneys
[19]. Building on the scaffold of information uncovered by
his predecessors, von Baer discovered the presence of
primitive germ cells and ultimately eclipsed any influence
of preformationism [20].

Beginnings of the notion of pluripotency
Delineating vertebrate developmental processes proposes
the presence of pluripotent cells which participate in the
contribution of the cellular entirety of an adult organ-
ism. The first inkling of pluripotency was established by
Hans Driesch who demonstrated that isolation of indi-
vidual cells within 2-cell embryos culminated in the gen-
eration of two small complete larvae [21]. In parallel,
Hans Spemann validated the ability of detached cells
within 2-cell newt embryos to develop into intact organ-
isms [22]. As Spemann was poised with micro-surgical
skills, he extended his findings in embryology through
the constriction of developing embryos using baby hair.
By restricting the position of the nucleus to one side of
the cytoplasm, development of the embryo into its 16-
cell state would result in the escape of one cell past the
noose, into the opposite end. This led to the formation
of twin larvae, suggesting the pluripotent capacity of
cells within the developing embryo. These findings illu-
minated a new era of embryological study and unrav-
elled avenues for the study of pluripotency.

Embryonic carcinoma cells
To reinforce the notion of pluripotency, pluripotent cells
have been successfully established on the Petri dish. Ter-
atocarcinomas are tumours discovered in humans and
mice ([2,23]. Inspection of these cellular masses reveals
the presence of a plethora of organised structures, in-
cluding teeth, fingers and hair, suggesting the presence
of pluripotent cells within the tumour. This was corro-
borated through the determination that intraperitoneal
injection of a single cell could generate teratocarcinoma
consisting of an array of differentiated tissues [3]. Like-
wise, grafting of mouse embryos into adult mice also
leads to the formation of teratomas, reinforcing the ex-
istence of all-encompassing cells ([24,25]). Teratomas in
both contexts have been successfully maintained in cul-
ture [26-29]. Designated as embryonic carcinoma (EC)
cells, these cells exhibit pluripotent properties including
the ability to form teratomas in immune-compromised
mice and serve as the first platform to study embryonic
development of mice in vitro.

Embryonic stem cells
Soon after, the inner cell mass of mouse blastocysts was
demonstrated to be sustained on a petri dish, recapitu-
lating an early developmental event in vitro [5,6]. La-
belled as embryonic stem (ES) cells, these cells were
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competent at contributing to the three germ layers in
teratomas, when injected into immune-compromised or
syngenic mice. Furthermore, re-introduction of these
cells into the mouse blastocyst led to the formation of
high percentage chimeras, indicating their ability to par-
ticipate in normal murine development, a property not
frequently shared with EC cells. To satisfy stringent
pluripotent stipulations, ES cells were also studied for
their ability to contribute to the germline and an intact
embryo. The former was approached through the cross
of chimeras to phenotypically distinct wildtype mice
[30], whereas the latter was addressed through tetraploid
complementation assays [31,32].
Amenable to modifications, ES cells embody a useful

tool for genetic alterations (reviewed in [33]). With the
elucidation of the genetic composition of the mouse in
2002 [34], the genomic content of ES cells has been fre-
quently disrupted in a precise fashion to study gene
function. The capacity for germline transmission results
in the establishment of intact mice harbouring any
desired genetic mutation in the germline [35-38].

Epiblast stem cells
ES cells represent a subset of cells isolated from the epi-
blast in pre-implantation blastocysts and depict a primi-
tive developmental stage of the developing embryo. To
recapitulate late phases, two independent groups have
segregated the columnar epithelial epiblast of the early
post-implantation embryo and cultivated it on a petri
dish [4,9]. Termed as Epiblast stem cells (EpiSCs), they
behave distinctly from ES cells and are rarely able to
generate chimeras. However, both ES cells and EpiSCs
are competent in multi-lineage differentiation, where in-
jection of these cells into immune-compromised mice
results in the development of teratomas comprised of
tissue types characteristic of the three germ layers [4,9].
Examination of the molecular circuitry within these

cells revealed some similarities to ES cells, where the
core transcriptional machinery consisting of Oct4, Sox2
and Nanog was expressed [39-41]. However, ES cells and
EpiSCs exhibit disparities in transcript and epigenetic
levels of markers associated to the inner cell mass and
early germ layers [9], highlighting distinctions in their
original developmental stages.

Embryonic germ cells
Pluripotent stem cells divergent from the mouse blasto-
cyst were first derived from primordial germ cells
(PGCs) [7,8]. Emergent at 7 days post coitum (dpc),
these cells are represented by a small population of
alkaline-phosphatase positive cells [42]. In a span of six
days, these cells undergo extensive proliferation every
16 hours to comprise of 25,000 PGCs [43], and eventu-
ally reside in either the testis or ovary of the mouse.
Extraction of PGCs at 8.5-12.5 dpc from the posterior
fragment of the embryo and cultivation in the presence
of soluble factors such as leukemia inhibitory factor
(LIF), steel factor (SF) and fibroblast growth factor
(FGF), results in a population of cells that exhibits self-
renewal and limitless proliferation ([7,8,44,45]). Coined
as embryonic germ (EG) cells, these cells resemble ES
cells and are capable of generating chimeras and con-
tributing to the mouse germline [7,46,47].
Artificial states of pluripotency
Historical perspectives on the study of vertebrate devel-
opment illuminated the remarkable capacity of a ferti-
lized oocyte to generate a complete organism. This led to
the advent of nuclear reprogramming, denoted by the
transition between unrelated cell types triggered by
switches in gene patterns. Introduction of a somatic cell
nucleus into an enucleated oocyte results in the re-
establishment of epigenetic marks, allowing the hybrid
cell to generate an organism ([10]; [48,49]). Termed as
Somatic Cell Nuclear Transfer (SCNT), this technique
has proved effective across species [11,50], but is subject
to technical competence and coordinated mitotic cycles
(reviewed by [51]).
A similar phenomenon is observed upon the fusion of

pluripotent stem cells and somatic cells. The environ-
mental milieu arising from the pluripotent cell seizes
control of the cellular transcriptional machinery and
leads to the silencing of somatic markers in the fusion
cells. The resultant heterokaryon is tetraploid but able to
differentiate into all three germ layers [14,52].
Recently, ectopic expression of four transcription fac-

tors was described to revert somatic cells to a pluripo-
tent state [13]. For the ease of nomenclature, these
resultant cells were termed as induced pluripotent stem
(iPS) cells. Mouse iPS cells are similar to mouse ES
cells, and are capable of generating chimeras and con-
tributing to the germline [53]. Traversed across species,
human iPS cells have since been obtained [54,55]. The
ability to generate patient specific iPS cells highlights
its potential for cell therapy, drug screening and disease
modelling (reviewed by [56]). Comprehensive studies of
iPS cells and ES cells reveal minute differences in phos-
phoproteomic and transcriptomic components that
were statistically disregarded [57]. However, epigenomic
analysis at high resolution expose subtle differences be-
tween iPS cells and ES cells [58,59] and continuous
in vitro culture could incur genomic aberrations
[58,60,61]. These discrepancies could account for func-
tional disparities such as epigenetic memory [62-64]
and immunogenicity [65], surmising potential for im-
provement in the derivation of iPS cells which possess
qualities that are identical to ES cells.
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Chemicals and pathways associated with murine
pluripotent stem cells
Pluripotent cells exist in a fleeting manner within the
mouse embryo, placing emphasis on the remarkable ex-
tension of their life in culture. Supporting chemicals or
matrix are necessary for the maintenance of pluripotency
in culture, as exemplified in the reliance on fibroblasts and
serum in primary studies describing ES cells, EC cells and
EG cells, suggesting a non-cell autonomous mechanism in
self-renewal. Extrication of components that support plur-
ipotency, in concert with our current understanding of de-
velopmental pathways, can lead to the improvement of
growth parameters of pluripotent cells, and augment our
knowledge on embryonic development.
Stemming from the discovery that medium condi-

tioned by Buffalo rat liver cells was sufficient to retain
pluripotency [66], the active component necessary for
this phenomenon was narrowed down to leukemia in-
hibitory factor (LIF) [67,68]. The importance of LIF has
been portrayed by its obligatory need in the culture
medium [69], acting through gp130 and the recruitment
of JAK kinase and STAT3 [70,71]. The ability of LIF to
maintain pluripotency in culture is mirrored in a physio-
logical context, where LIF and gp130 are expressed in
early embryos and during diapause [72].
Although LIF/gp130 and their related pathways are piv-

otal in the maintenance of pluripotency, the use of chem-
ically defined basal media supplemented with N2, B27 and
LIF is unable to impede differentiation of ES cells into
neuronal derivatives [73]. This propensity to differentiate
can be restrained by the addition of bone morphogenetic
protein (BMP), an anti-neural factor in vertebrate devel-
opment [74]. Functioning through Inhibitor of differenti-
ation (Id), BMP together with LIF are sufficient to drive
ES cells into self-renewal without differentiation [73].
Interaction between LIF and gp130 triggers a conflict-

ing response, where both the JAK/STAT and ERK1/2
pathways are activated [75,76]. As the latter stimulates
differentiation, ERK or FGF inhibitors were demon-
strated to circumvent this impediment and support the
maintenance of ES cells [77]. Activation of the Wnt
pathway through the inhibition of GSK3β also assists in
the sustenance of an undifferentiated state. The effects
of ERK and GSK3β inhibition (2i) are compounded
when used in combination, and results in a homogenous
population of primitive cells designated as ground state
pluripotency [78]. Mirroring this in vivo, addition of 2i
to early mouse embryos in culture causes an expansion
of the Nanog-expressing epiblast at the expense of the
hypoblast and trophoectoderm compartments [79].
Growth media containing 2i and LIF has also made it
possible to derive ES cells from mouse strains, such as
CBA and NOD, and rats, which have been recalcitrant
to previous methods [77,80-82].
The culture conditions of EpiSCs are distinct from ES
cells. FGF and Activin are necessary to preserve EpiSCs
[4,9], whereas the addition of 2i and LIF generally results
in cell differentiation or death [83]. In contrast, addition
of an Activin inhibitor led to widespread differentiation,
suggesting reliance on Nodal/Activin signalling [9].
The disparities reflected by dissimilar developmental

potential and growth conditions of mouse ES cells and
EpiSCs has led to the notion of naïve and primed pluri-
potency (Nichols and Smith, 2009c). Originating from
the pre-implantation epiblast, ES cells display complete
pluripotent potential and are capable of germline contri-
bution. In contrast, EpiSCs derived from the post-
implantation epiblast are incapable of neither somatic
nor germline contribution, exhibiting limited pluripotent
potential.
Classification of naïve and primed pluripotency has been

strengthened by the analysis of X-chromosome inactiva-
tion (XCI). XCI is a process where one X chromosome in
female diploid cells is inactivated, resulting in the reduc-
tion of most X-linked transcripts to comparable levels
between males and females ([84]; reviewed by [85]). Apart
from EpiSCs, mouse pluripotent cells (ES, EC, EG, iPS
cells) display two copies of active X chromosomes [86-88].
This is reminiscent of pre-implantation epiblasts which
possess two active X chromosomes and hold the capacity
to derive complete organisms, exemplifying naïve pluripo-
tency [89,90]. In contrast, EpiSCs exhibit XCI [83] or
primed pluripotency and represent post-implantation
epiblasts where XCI begins and the capacity to form
whole organisms is lost.

Establishment of ES cells from other species
After successful isolation and culture of mouse ES cells,
there have been several attempts at engineering an
equivalent in various species, including rodents such as
hamsters and rats [80,81,91], non-rodents such as rab-
bits, minks, chickens, pigs and cows [92-98], and pri-
mates such as rhesus monkeys and the common
marmosets [99,100].
Heightened interest in the generation of an array of

pluripotent stem cells can be attributed to its potential
to differentiate into an array of cell types, representative
of the three germ layers. Application of this technology
to humans illuminates the possibility of regenerative
medicine. To address this, human ES cells were derived
from cleavage stage human embryos that were acquired
from in vitro fertilization donors [101].
With the successful establishment of human ES cells,

much effort has been directed at understanding the
pathways involved in maintaining the pluripotent cells in
culture and modifications to growth conditions of
human ES cells have since been implemented. Unlike
mouse ES cells, LIF signalling is not sufficient to sustain
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Figure 1 (See legend on next page.)
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Figure 1 Different Pluripotent States in Mouse and Human. (TOP) Distinct pluripotent states derived in vitro from developing mouse
embryos or through nuclear reprogramming of somatic cells. Further manipulation through the introduction of genetic factors or modification of
growth conditions leads to the attainment of additional pluripotent states, contributing to the complexities of pluripotency. (BOTTOM)
Pluripotent states captured in vitro from human blastocysts or nuclear reprogramming of somatic cells. Modelled after pluripotent states during
murine development, recent findings suggest the presence of a naïve pluripotent state during human development.
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undifferentiated human ES cells [102,103]. In addition,
BMP4 triggers trophectoderm differentiation in human
ES cells [104,105]. Instead, FGF and Nodal/Activin signal-
ling pathways have been implicated in the self-renewal of
human ES cells, reminiscent of EpiSCs [106-109]. Fur-
thermore, comparison of gene expression patterns and
XCI further supports the resemblance between human ES
cells and EpiSCs [110].
Following the inception of transcription factor induced

reprogramming, an array of human somatic cell types
have been competently reprogrammed to derive human
iPS cells [54,55,111,112]. Human iPS cells represent an
attractive source of patient-specific pluripotent cells and
evade ethical concerns faced by the usage of human ES
cells. Cultivated in a similar environment to human ES
cells, human iPS cells display close resemblance when
protein and epigenetic signatures are compared [57,58],
hence are also likened to EpiSCs.
Differences between human and mouse ES cells: naïve and
primed pluripotency
The similarities between human pluripotent cells (human
ES cells and iPS cells) and primed pluripotent mouse
EpiSCs propose the possible existence of an unexplored
naïve human pluripotent state reminiscent of mouse ES
cells. Using human embryos, it has been recently demon-
strated that introduction of inhibitors against FGF, ERK
or GSK3 did not reduce the Nanog-expressing epiblast
compartment, highlighting a stark contrast to conven-
tional human pluripotent cells which readily differentiate
in similar conditions [113,114]. An additional study
which traced the origin of human ES cells derived from
human blastocysts noted that the establishment of
human ES cell lines required the transition into a post-
ICM intermediate displaying X-inactivation ([115]).
Murine EpiSCs can be converted into ES cells with the

ectopic expression of Klf2, Klf4, Nr5a2, or the addition
of 2i and LIF ([83,116], [117]). Likewise, human ES cells
have been manipulated to phenotypically resemble
mouse ES cells [118]. Using iPS cell technology, similar
cellular states have been achieved using chemical cock-
tails or various transgenic combinations [88,118-120]. In
some of these findings, both copies of X chromosomes
are active, suggesting the possible attainment of naïve
pluripotency. Strikingly, these novel pluripotent states
rely on continuous transgenic expression, and only one
study established human iPS cells that exhibited XCI
reversion and transgene independence [88].
The study of pluripotency has amassed a wealth of

information (Figure 1), from the discovery of nuclear
reprogramming in the 1952, to the isolation of mouse ES
cells and EpiSCs in 1981 and 2007 respectively. As the
first vertebrate model organism used to study pluripo-
tency, our understanding of the various stages during
mouse embryonic development has thrived. Translating
this knowledge to the developmental processes in other
organisms may shed light on species-specific embryo-
logical properties, or offer refinements to the strategies
employed for the study of development.
The identification of human pluripotent cells and their

comparison to murine counterparts is one such example.
Disparate chemical components within the growth
media plays a critical role in the observed differences be-
tween primed human pluripotent cells and naïve mouse
ES cells. The generation of mouse ES cells from the
inner cell mass of the blastocyst involves the acquisition
of new genetic profiles associated to self-renewal, epi-
genetic regulation and arrest of normal development
[121], emphasising the influence of culture conditions
on the establishment of cell lines. Furthermore, growth
conditions can be manipulated to derive pluripotent cell
lines from blastocysts which are distinct from mouse ES
cells and EpiSCs [122], and EpiSC-like derivatives from
fibroblasts using the conventional cocktail of reprogram-
ming factors [123].
Although conventional human pluripotent stem cells

resemble mouse EpiSCs closely, there exist differences
between the two. EpiSCs express cell surface marker
SSEA-1, whereas conventional human ES cells and iPS
cells display SSEA3/4 ([9]; reviewed by [124]). In
addition, human ES cells, express pluripotency markers
DPPA3, KLF4 and REX1, unlike EpiSCs [39,110].
As the study of human pluripotency is in its infancy,

parallel studies in mouse models can only serve as a
guide and may not faithfully recapitulate the physio-
logical events which occur during human development.
However, recent pieces of evidence suggest the existence
of a naïve state of pluripotency and may surmount diffi-
culties met with FGF-dependent human ES cell and iPS
cells. These include susceptibility to harsh dissociation,
inability to survive in single cell suspension and genomic
instability [125-130]. In conclusion, there remains much
to be unearthed for the full elucidation of human
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embryonic development and further experiments are es-
sential to uncover the proposed subset of naïve pluripo-
tent stem cells.

Conclusion
This article highlights advancements in the study of plur-
ipotency, evolving from primary embryological experi-
ments, to the recapitulation of an array of pluripotent
states in vitro. Murine ES cells were first reported in
1981 [5] and represented an amenable and convenient
platform to study developmental pathways and the sus-
tenance of pluripotency. The identification of EG cells,
EpiSCs and iPS cells led to the comprehension of various
developmental stages. It was only in 1998 that success
was met with human ES cells [101]. Armed with 17 more
years of research, mouse pluripotent states serve as a
reference point when delineating human pluripotency.
With the advent of iPS cells and sophisticated technical
resources, knowledge garnered from the study of human
ES cells and iPS cells will continue to amass exponen-
tially, addressing our concerns on naïve pluripotency.
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