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perspective
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Abstract

Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration.
Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past
research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell
fate of stem cells. However, cellular contents of mMRNAs are sometimes not equivalent to proteins, the functional
units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are
also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status
manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated
in several stem cell systems. Through the cooperation of both cis-elements of MRNAs and trans-acting RNA-binding
proteins that are intimately associated with them, regulation of localization, stability, and translational status of mMRNAs
directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of
the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate

Protein synthesis

species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review
highlights some of the RNA-binding proteins that play important functions during the maintenance and
differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.
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Introduction

Tissue homeostasis and regeneration require balanced
regulation of self-renewal and differentiation of adult
stem cells (ASCs) that reside in particular tissues.
Like any other cell type, cellular functions of ASCs
depend on specific gene expression programs that are
subject to precise control in order to produce neces-
sary and sufficient proteins, the functional units
within cells. In response to environmental stimuli,
genetic information is transferred to proteins through
messenger RNA (mRNA) production (transcription)
and protein synthesis (translation) under the regula-
tion of cell-autonomous and non-autonomous factors
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in order for cells to elicit proper functions. Intensive
investigations over past decades have uncovered key
factors and molecular mechanisms that govern the
regulation of gene expression during self-renewal and
differentiation of ASCs, of which transcription factors
and transcriptional regulation have been at the center
stage. However, abundance of mRNAs in a cell is not
necessarily equivalent to the abundance of functional
proteins that cells produce. From the birth of mRNAs
to their translation and eventual degradation, mRNAs
undergo extensive modifications and regulation, mainly
through the action of RNA-binding proteins (RBPs)
(Fig. 1). Since cells often dedicate ~20 % of their cellular
energy to the process of protein synthesis, regulation
of gene expression at the post-transcriptional and
translational levels are thus of great importance. It
has been increasingly realized that post-transcriptional
and translational regulation hold fundamental roles in
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Fig. 1 The life cycle of mRNAs. mRNAs undergo a series of modification events since they are transcribed from the genome. These processes are
facilitated by the action of numerous RNA-binding proteins (RBPs) (shown as molten globules in the diagram), which interact with mRNAs
at various regions through conserved RNA-binding domains. Interactions with RBPs and associated proteins render status of mRNAs as either repressive
or active for protein synthesis in the cytoplasm of a cell. mRNAs can be stored in large RNA-protein complexes (RNA granules, cloud in green) in the
cytoplasm when translation is not permitted. The dynamic exchange of mRNAs between cytoplasm and RNA granules is mediated by RBPs that are
not fully characterized. Translational machinery, including tRNAs, ribosomal RNAs, and subunits are synthesized in the nucleolus and
exported to cytoplasm in order for protein synthesis to occur. Following translation, tRNAs and ribosomal subunits can be recycled for
additional rounds of translation. Major processes of mRNAs' life cycle are indicated in numbers (black arrows). (1) Transcription; (2) splicing;

of mMRNA

(3) nuclear export; (4) post-transcriptional modification of mRNAs; (5) cytoplasmic ribonucleoprotein complex (RNA granule) formation;
(6) cytoplasmic alternative polyadenylation (APA); (7) exchange of mRNAs between RNA granule and cytoplasm; (8) complex formation
at the 5'- and 3'-UTRs of mRNAs, translation initiation; (9) translation; and (70) degradation. Blue rod: exons; red rod: untranslated regions

stem cells [1, 2]. Global effects of protein synthesis on
stem cell behavior manifested by RBPs and translational
regulation have been demonstrated in several stem cell
systems [3—5]. However, how RBPs participate in various
steps of RNA metabolism during self-renewal and differ-
entiation of ASCs and how ASCs are regulated at the
post-transcriptional and translational levels in order to ac-
commodate tissue homeostasis and regeneration remain
largely unexplored.

Germline stem cells in adult animals are ASCs in re-
productive organs and have been one of the widely uti-
lized systems for stem cell research. In mouse embryos,
primordial germ cells (PGCs) are formed around E6.25
from proximal posterior epiblast. They then proliferate
and migrate into embryonic gonad to form either pros-
permatogonia or oogonia in male and female animals,

respectively. In males, prospermatogonia (also called
gonocytes) are the precursor of future spermatogonial
stem cells (SSCs) in adult animals. Quiescent gono-
cytes in the embryo (arrested at prophase of mitotic
cell cycle) only resume cell division following birth of
the animal. During the first 3 days of post-natal de-
velopment (1-3 dpp (days post-partum)), gonocytes
proliferate and migrate from the center of developing
seminiferous tubule to the basement membrane. Colonies
of SSCs composed of type A undifferentiated stem cell
populations are established around 7 dpp. These cells exist
as single cells (Agingle OF Ag) or cohorts (Apgireq OF Ay and
Agligned OF Aglign, due to incomplete cytokinesis). Although
poorly defined, niche environment consisting of surround-
ing somatic Sertoli cells, Leydig cells and interstitial Myoid
cells provide essential stimuli, such as hormones and
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growth factors, to regulate the self-renewal and differenti-
ation of SSCs. Previous studies have shown that PGCs,
gonocytes, and SSCs all possess characteristics of stem
cells, although with varied degree of pluriopotency, based
on examinations of their differential gene expression and
in vitro tests. Nevertheless, SSCs undergo self-renewal
and differentiation and are the bases for continuous pro-
duction of spermatozoa (matured sperm) throughout ani-
mal’s adult life (Fig. 2).

It has been shown that RBPs play pivotal functions
during germ cell development. Their participation in
the regulation of self-renewal and differentiation of
germline stem cells are first demonstrated in inverte-
brates, such as Drosophila and Caenorhabditis elegans
[5, 6]. Relatively less is known about functions of
RBPs in germline stem cells in mammals. Increasing
evidences show that mammalian germ cells regulate
their overall development utilizing not only general ma-
chineries for RNA metabolism and translation but also
germline specific mechanisms. Small non-coding RNAs,
such as miRNAs and piRNAs, are particularly enriched in
spermatogenic cells. Disruption of small RNA synthesis
showed deleterious effects on spermatogenesis in mouse
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[7-9]. Recent studies further showed that long non-
coding RNAs (IncRNAs, >200 bps) participate in various
steps of spermatogenesis. Some of the newly identified
IncRNAs are specifically expressed in germ cells. Current
advances on this frontier have been summarized in a re-
cent review [10]. In female germline, post-transcriptional
regulations have been shown to be essential for female
germ cell development. Some of the RBPs that function in
female germline were also found to be important for the
male counterpart, while others were specific to female
germ cells [11].

In male germline stem cells, RBPs have been shown
to participate in various processes throughout the life
cycle of mRNAs during mammalian germ cell develop-
ment, ranging from transcription (such as DDX21) to
translational activation (such as LIN28). They interact
with non-coding RNAs or mRNAs in order to modulate
the stability of RNA species (by forming ribonucleopro-
tein complexes, RNPs), repress transposable elements
(TEs) in germline to protect genome integrity, and dir-
ect protein translation in a spatial-temporal manner. In
this review, known RBPs that have been shown to dir-
ectly influence the maintenance and differentiation of
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Fig. 2 Mouse spermatogonial stem cells. Gonocytes (descendents of PGC in male embryonic gonad, also called prospermatonia) resume mitotic
cell division and migrate from the center of growing seminiferous tubule to the basement membrane during the first 3 days following the birth
of the animal. Spermatogonial stem cell (SSC) colonies are established around 7 dpp (days post-partum) at the inner surface of seminiferous
tubule. They both undergo self-renewal to replenish stem cell pool and differentiation toward the lumen in order to generate sperm cells
throughout the life of adult animal. RNA-binding proteins (depicted in the diagram) participate in the regulation of self-renewal and differentiation
of SSCs
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spermatogonial stem cells in mouse are highlighted.
Studies of these RBPs demonstrate some common mo-
lecular mechanisms by which they function. Combining
this current knowledge and the latest development of
research technologies, exciting opportunities present in
front of us to further elucidate unknown players and
their functions.

RNA-binding proteins in mouse male germline stem cells
“Inert genome” theory was put forth in 1980s to explain
the differences between cell fate determination of germ-
line cells and somatic cells [12, 13]. It suggested that
genome of germline cells are “inert” and thus hard to
change or express, while somatic cells contain genomes
that are modified toward different cell states. This allows
germline cells to retain higher developmental potency,
comparable to that of embryonic stem cells, and also
illustrates the importance of regulatory mechanisms out-
side of genome in germ cells. Research in the past de-
cades demonstrated critical functions of several RBPs
during maintenance, proliferation, survival, and differen-
tiation of germline stem cells. Their temporal expression
patterns are well-coincided with their functional involve-
ment during spermatogenesis (Fig. 3).

LIN28

LIN28 protein has two isoforms, LIN28A and LIN28B.
LIN28A contains CCHC-type zinc finger RNA-binding
domain and expressed primarily in germline. Its func-
tional role as a pluripotent factor has been widely recog-
nized. Yu et al. used LIN28A, in combination with
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OCT4, SOX2, and NANOG, to successfully convert hu-
man fibroblasts into pluripotent stem cells (hiPSCs) [14].
It was found that, in embryonic stem cells (ESCs),
LIN28A binds the 5'-GGAGA-3" at the 3’-terminal loop
of pre-let-7 miRNA precursor and recruits TUTase4 3'-
terminal uridylyl transferase (zinc finger, CCHC domain
containing 11 (ZCCHCI11)) that uridylates pre-let-7 [15].
This prevents further processing of the miRNA precur-
sor by Dicer and eventual degradation of uridylated pre-
let-7. Via binding of the same 3'-loop region, TRIM25,
an E3 ubiquitin ligase turned RNA-binding protein, con-
fers LIN28A/TUTase4 uridylation activity specifically to
pre-let-7 [16], providing additional layer of specificity
control. In addition to its miRNA-binding activity,
LIN28A interacts directly with Pou5f1 mRNA in the CDS.
Together with RNA helicase A (RHA), this interaction
with the mRNA promotes protein translation of PouSfI
[17]. Thus, LIN28A can regulate the self-renewal and
maintenance of stem cells via inhibition of let-7 produc-
tion and activation of pluripotent gene expression. In
neural stem cells, miR125 could target Lin28a mRNA and
thus relieve the stress on let-7. This forms a negative feed-
back loop that regulates the self-renewal and differenti-
ation of neural stem cells [18]. Functional screens using
siRNAs showed that LIN28A affects PGC development
in vitro [19]. It was found that LIN28A could enhance
the conversion of PGC from embryonic stem cells. Its
role in germline pluripotency and animal development
in vivo are further emphasized by genetics studies in
mouse. Deletion of Lin28a gave rise to mutant mice
containing reduced PGC population and fertility. When
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Fig. 3 RBPs in mouse male germline. Diagram of temporal expression patterns of known RNA-binding proteins and their functions during mouse
spermatogenesis. Developmental times and various types of male germline cells are indicated above the expression patterns of RBPs (graded bars)
during germ cell development. Functional involvement of the RBPs during maintenance and differentiation of spermatogonial stem cells (SSCs)
and RNA metabolism are summarized in the middle and right panels, respectively. PGC primordial germ cells, A, A, Ay undifferentiated
spermatogonial stem cells; A1, B: type A1 and type B differentiating spermatogonia; Spcy spermatocyte, RS round spermatid, £S elongating
spermatid (different from the embryonic stem cells in the text), TE transposable element
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conception succeeded, animals die at post-natal age due
to massive metabolic and growth defects [20].

As an RNA-binding protein, the roles of LIN28A extend
beyond stem cells. Since the discovery of its role during
cell growth and differentiation in C. elegans, LIN28 has
been shown to modulate cellular metabolism and growth
in somatic and pluripotent stem cells through its targeting
of Insulin/PI3K/mTOR pathway components and
metabolic enzymes [21]. Combined RNA sequencing
and bioinformatics analyses showed that LIN28A in-
teracts directly with RNA species that contain con-
served sequence motif 5'-GGAGA-3" or LRE (LIN28-
responsive element). These studies identified a variety
of mRNAs as LIN28A targets, including mRNAs for
translation regulators, splicing factors, and cell cycle
controllers [22-24]. Its role, however unclear, is to
stabilize mRNAs and enhance protein translation, possibly
at the initiation stage. In consistent with this notion,
LIN28A has been found to co-sediment with polyribo-
somes on sucrose gradient of cell lysates [22]. Interest-
ingly, LIN28A also functions on the other side of the coin.
It was found that LIN28A suppresses translation of pro-
teins that are associated with ER, Golgi, and secretory
pathways in embryonic stem cells via binding of non-
canonical sequences within terminal loop of a small hair-
pin of target mRNAs [25]. The less recognized LIN28B
contains cold shock RNA recognition domain and has
been implicated in tumor progression process as an onco-
gene. It appears that Lin28 proteins elicit their functions
in a target-specific and cell context-dependent manner.
How LIN28 is regulated for its versatile functions remains
an intriguing question. Perhaps more stringent conditions,
such as conditional knockout mouse, will be helpful in
elucidating the mechanisms underlying LIN28 functions
and its role in germline stem cells. Additional co-factors
and post-translational modifications of the proteins them-
selves may be part of the functional system of LIN28.

NANOS family

NANOS proteins are zinc finger containing RNA-binding
proteins, specifically expressed in germline. It contains
three proteins (NANOS1, NANOS2, and NANOS3) that
are important for the maintenance of male germline stem
cells and spermatogenesis. Cell lineage tracing suggested
that NANOS2 and NANOS3 are expressed in undifferen-
tiated SSCs at different stages. While NANOS2 is mainly
expressed in Ay and A, SSCs, NANOSS3 is expressed in
all undifferentiated SSCs, suggesting their common and
yet different roles in regulating SSCs [26]. Functions of
NANOS2 were elucidated in studies using mutant and
transgenic mice. In Nanos2 mutant mice, germ cells devel-
oped pre-maturally at pre-natal stage with meiosis com-
menced in gonocytes. On the other hand, selective
deletion of Nanos2 in mouse testis caused accumulation
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of differentiating SSCs and gradual loss of spermatogen-
esis [27]. In contrast, over-expression of Nanos2 caused
accumulation of PLZF* SSCs (mainly A and A},) in sem-
iniferous tubules without increased cell proliferation or
decreased apoptosis. This subsequently caused reduced
germ cell differentiation. In addition, Sada et al. found that
over-expression of Nanos2 partially rescued GFRal™'~
phenotype, placing NANOS2 downstream of GDNF in
the SSC self-renewal pathway [28]. These observations
suggested that NANOS2 plays important functions in
repressing meiotic gene expression and SSC maintenance.
Deletion of Nanos3 in mouse caused increased apoptosis
in PGC that is under the control of both BAX-dependent
and independent pathways [29].

Both NANOS2 and NANOS3 are found in ribonucleo-
protein complex (RNA granules) in the cytoplasm of em-
bryonic and neonatal male germ cells. However, these
RNA granules differ from the mouse VASA homologue
(MVH)-containing chromatoid body (CB, a large RNP
complex in haploid spermatids) suggesting that they may
regulate different sets of mRNAs in germline stem cells.
Biochemical analyses using mass spectrometry following
protein co-immunoprecipitation identified proteins that
interact with NANOS2 [30]. Among them, CCR4-NOT
deadenylase complex co-localize with NANOS2 in P-body
of spermatogenic cells. P-body in Nanos2 mutant mice
appeared aberrant in shape and number without CCR4-
NOT, indicating that NANOS2 not only maintains P-body
integrity but also facilitates the localization of CCR4-NOT
complex. This P-body effect is directly associated with the
RNA-binding activity of NANOS2 since zinc finger
truncation mutation of NANOS2 showed the similar
phenotype [31]. In addition, GST pull-down assays also
suggested that NANOS3 could interact with CNOT8
[31]. Because the CCR4-NOT complex contains RNA
deadenylase activity, it is proposed that NANOS2 and
NANOS3 mediate the degradation of target mRNAs via
interactions with CCR4-NOT. Indeed, it was found that
mRNAs of meiotic genes were increased in Nanos2 mu-
tant mice [27]. In the same vein, a recent study showed
that NANOS2 was able to retain mTOR in the stress
granules of SSCs along with differentiation-related tran-
scripts and thus preventing the translational signaling
from activating [32].

However, NANOS2 was also found in polyribosomal
fraction of cell lysates, indicating its function in active
protein translation [33]. How does NANOS2 affect
mRNA dynamics between repressed and activated states
remain elusive. Microarray analyses following NANOS2
immunoprecipitation revealed that its target mRNAs in-
clude mRNAs for pluripotent gene Sox2, as well as mei-
otic genes Stra8 and Taf7/l [34]. This suggested that
perhaps NANOS2 functions as the keeper of tissue spe-
cific stem cells. It maintains pluripotency of SSCs while
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keeping the meiotic potential of germ cells in check.
How the repressive and active roles of NANOS2 on pro-
tein translation are regulated during maintenance and
differentiation of germline stem cells require further
investigation.

Less is known about NANOS1 during germ cell devel-
opment. Preliminary studies suggested that NANOSI1
could interact with DEAD-box RNA helicase GEMIN3
and co-localize in the CB of human spermatids, suggest-
ing its role in mRNA processing during the late phase of
spermatogenesis [35]. Human syndrome of azoospermia
and oligozoospermia has recently been linked to muta-
tions that occur in Nanosl [36]. It is not clear whether
NANOS1 also binds CCR4-NOT complex to mediate
degradation of target mRNAs.

DAZ family

Deleted in azoospermia (DAZ) family proteins contain
three members (DAZL, DAZ, and BOULE) that interact
with ribonucleic acids via the conserved RNA recogni-
tion motif. They share high degree of homology (up to
80 %) among themselves. DAZ proteins are specifically
expressed in germline of both sexes from embryonic till
post-meiotic stage and play important functions in regu-
lating germ cell development. As RNA-binding proteins,
they elicit their roles on germ cell development through
modulating the translation of specific mRNAs. Using
microarray analyses following protein immunoprecipita-
tion, it was found that DAZL regulates the translation of
germ cell-specific genes, such as Mvh, through direct
interaction with their mRNAs [37]. In human ESCs cul-
tured in vitro, over-expression of DAZ family proteins
induced haploid cell formation. Concomitant with DAZL
expression in hESCs, VASA expression was also induced,
while knockdown of Dazl reduced VASA by ~50 % [38].
In addition, expression of pluripotent genes that are nor-
mally expressed in germline stem cells were also induced
with the expression of DAZ proteins in ESCs, consistent
with the notion that DAZ proteins regulate germ cell
fate determination. Like NANOS and LIN28, DAZL acti-
vates translation of mRNAs depending on cellular con-
text and its targets. It was found that DAZL binds 3'-
UTR of germ cell mRNAs and PABP during translation
initiation [39, 40]. These studies suggested that DAZL
interacts with consensus motifs within 3'-UTR of target
mRNAs and facilitate their protein expression probably
via interactions with initiation complex. It is not clear
whether there are other consensus RNA sequences for
DAZL interaction and whether they are conserved in
other target mRNAs.

DAZL was found to localize in stress granule, the
RNA-protein complex that forms in cells’ cytoplasm
when under stress. It helps to maintain mRNAs that are
not actively translated or when repression is required. In
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Dazl mutants, stress granules were diminished and
mRNAs and translation inhibitor phosphorylated elF2a
could not be recruited to stress granules [41]. The stress
granule localization of DAZL suggests its repressive role
in mRNA translation. This is in consistence with the ob-
servation that DAZL targets several pluripotent genes
(including Sox2 and Sall4, but not Pou5f1) and represses
their expression at the post-transcriptional level [42].
Thus, DAZL can also function as both positive and
negative regulators of mRNA translation. However, it is
not clear whether DAZL is also present in active polyri-
bosomal complexes in cells. Less is known about the
other two members of DAZ family, although data
suggested that they both are required for germ cell
development. For example, human DAZ1 is specific-
ally expressed in pre-meiotic spermatogonia [43]; de-
letion of Boll (Boule homologue in Drosophila) caused
defects in G2/M transition of meiosis in germ cells
[44]. Molecular mechanisms of DAZ protein functions
require further exploration.

DND1

Dead end homologue 1 (DND1) protein is a germ cell-
specific RNA-binding protein, containing conserved RNA
recognition motif. First cloned from Ter mutant mouse, it
was found that a point mutation occurring in Dndl gene
generates an early termination codon and is responsible
for the testicular germ cell tumor (TGCT) phenotype re-
sembling that of Ter mutation in human [45]. TGCT is
caused by aberrant germline stem cell functions during
animal’s fetal development. Over-proliferated germline
stem cells migrate and integrate into various types of tis-
sues and cell lineages, leading to multiple tumor growth.
In Ter/Ter mutant mice, PGCs were either lost or become
embryonic carcinoma integrated into multiple tissues and
cell types, similar to the syndrome of human disease. This
provided an opportunity to identify the molecular mecha-
nisms that cause the disease. It has been shown that
DND1 could bind uridine-rich region of 3'-UTR of
mRNAs and prevents miRNA mediated mRNA decay, in-
cluding NanoslI in zebrafish embryo and several pluripo-
tent mRNAs in porcine oocytes [46]. While its in vivo
target mRNAs remain to be characterized, DND1 was
found to express in ESCs and interact with mRNAs of
pluripotent genes (including Pou5f1, Sox2, and Nanog),
cell cycle regulators and genes involved in regulating
apoptosis in stably transfected ES cells [47]. DND1
itself can be regulated by miRNA and its activity by
competing enzyme APOBEC3 that binds the same
uridine-rich 3'-UTR region [48, 49]. Thus, DND1 could
protect mRNA targets against certain miRNA species
in a context-specific manner through direct interaction
with mRNAs that affecting proliferation and mainten-
ance of germline stem cells.
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PIWI family

PIWI/argonaute family proteins are widely recognized for
their roles in regulating stem cells and germ cell develop-
ment. PIWI proteins belong to the subclass of PIW1/argo-
naute family that interacts with small non-coding RNAs
and expresses mainly in the germline. Mouse PIWI family
is composed of three proteins, namely PIWI-like protein-
1 (PIWIL1, also known as MIWI), PIWI-like protein-2
(PIWIL2, also known as MILI), and PIWI-like protein-4
(PIWIL4, also known as MIWI2), all of which contain
conserved PAZ and PIWI domains. Their primary func-
tions in the germline have been repression of TEs on the
post-transcriptional level and preventing TEs from sabota-
ging genomic integrity via binding to PIWI-interacting
non-coding RNAs (piRNAs, 26-30 nt long). Recent re-
search extended functions of PIWI proteins to directly
regulate mRNA metabolism and epigenetic modifications
of the genome. This is mainly achieved through the recog-
nition of piRNA complementary sequences within mRNA
and DNA, in collaboration with PIWI-interacting pro-
teins, including RNA helicases and methylation enzymes.
More details can be found in a recent review [50].

In mouse, PIWIL1 is specifically expressed in meiotic
spermatogenic cells and post-meiotic spermatids. The
development of haploid spermatids is halted at early
phase of growth in the absence of PIWIL1, suggesting
its role in regulating post-meiotic development of
sperm [51]. Its localization in the CB implicates its
function in maintaining mRNA stability and transla-
tional repression, in addition to TE regulation. Interest-
ingly, it was found that PIWIL1 co-sediments with
polyribosomes on sucrose gradient of testis lysates and
presents in the mRNA cap-binding protein complexes,
suggesting its participation in active translation [52].
Experiments in author’s lab also suggested that PIWIL1
interacts with PABPC1 during spermiogenesis [53].
How their interactions affect protein translation during
spermiogenesis requires further exploration.

The functional importance of PIWI proteins in germ-
line stem cells has also been elucidated for the other
two family members, PIWIL2 and PIWIL4. Both are
expressed in germline in PGCs at embryonic stage and
meiotic germ cells in adult animals. Results showed
that they not only utilize piRNAs as functional acces-
sories but also actively participate in the biogenesis of
piRNAs [54, 55]. In consistence with this, germ cells in
both Piwil2 and Piwil4 mutant mice contained in-
creased level of TEs and decreased production of
piRNA species [56, 57]. In either Piwil2 or Piwil4 mu-
tant mice, spermatogenesis is disrupted at early pro-
phase of meiotic division, but no apparent defects were
found in either PGCs or female germ cells [58, 59]. Ab-
errant expression of meiotic genes and cellular apop-
tosis eventually lead to progressive loss of male germ
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cells [59, 60]. In Piwil2 mutant, majority of spermato-
gonia underwent slower cell cycle progression while the
perinatal development of gonocytes seemed normal,
suggesting that PIWIL2 is important for the mainten-
ance and differentiation of SSCs. The compromised de-
fects in SSCs of these mutant mice suggest that
PIWIL2 and PIWIL4 may have different and yet redun-
dant functions in germline stem cells, which could be
revealed by studying the mice lacking both genes. Simi-
lar to Mvh knockout mice, expression of pluripotent
gene Pou5fl was decreased in Piwil2 mutants (but in-
creased in Piwil4 mutant), consistent with its role in
regulating stem cells [54, 60]. Both PIWIL2 and
PIWIL4 were found in the CB, where they interact with
MVH and Tudor proteins [54]. Intriguingly, PIWIL2
was found to interact with protein translation regula-
tors, including eIF3A, elF4E, elF4G, and m7G-cap
complex in an RNA-dependent manner [60]. The over-
all protein synthesis was reduced in Piwil2 mutant, sup-
porting its role in translational regulation. What
molecular mechanisms are underlying translational
control by PIWI proteins and how these affect germline
stem cells are fascinating questions for future research.

Other transposable element regulators

Moloney leukemia-activated virus 10-like 1 mouse
homologue (MOV10L1) is a testis- and heart-expressing
ATP-dependent DExD box RNA helicase. Although
functions of MOV10L1 are not completely understood,
it has been shown that MOV10L1 interacts with MILI
and MIWTI to facilitate piRNA biogenesis, thus may be
important for the TE control and genome maintenance
in male germ cells [61]. Gene deletion in mouse caused
aberrant expression of Linel and IAP, two transposable
elements in the male germline. These mice contain germ
cells that are arrested at early meiotic stage [62, 63].
Genetic studies further showed that RNA helicase do-
main of MOV10L1 is important for its piRNA process-
ing activity and thus germ cell development [61, 63]. In
addition, it was found that MOV10L1 co-localizes with
germ cell protein with ankyrin repeats, sterile-a motif,
and leucine zipper (GASZ) (see below) in the cytoplasm,
implicating its role in mitochondrial regulation.

GASZ was first found in 2002 during screening of
genes that are specifically expressed in germ cells. The
protein is highly conserved in different species, ranging
from Xenopus to human. Although its function is not
fully understood, germ cells of Gasz mutant mice were
arrested at early meiotic stage and contained increased
levels of transposable elements and decreased expression
of piRNAs and nuage proteins [64], suggesting its par-
ticipation in the TE regulatory pathway. It was found
that GASZ associates with MILI containing RNA gran-
ules and partially overlaps with MVH in spermatocytes.
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However, it was not located in the CB. In the absence of
Gasz, both MILI and MVH were greatly reduced in
RNA granules, suggesting that GASZ may participate in
the organization of RNA granules in meiotic germ cells.
Recent results suggested that GASZ may bind DAZL
and facilitate the germ cell fate determination and
expression of pluripotent genes in embryoid bodies cul-
tured in vitro [65]. Can it maintain germline stem cells
via regulating pluripotent gene expression and meiotic
genes like NANOS and DAZL? Further research will
provide the answers.

MVH

MVH, also known as DDX4, interacts with ribonucleic
acids through conserved RNA-binding motif DEAD
(Asp-Glu-Ala-Asp) box. It is an ATP-dependent RNA
helicase, which often modifies the secondary structures
of RNA during processes such as alternative splicing and
protein translation initiation. MVH expression starts in
the embryonic germline in PGCs and lasts till the com-
pletion of meiosis in male germ cells. It was found that
MVH interacts with other RBPs, such as Tudor and
PIWTI proteins, and co-localizes with them in RNP com-
plexes including the CB. Deletion of Mvh gene in mouse
interrupted spermatogenesis. Male germ cells stopped to
develop beyond zygotene stage of meiosis, causing ab-
sence of mature sperm and eventually leading to male
sterile phenotype [66]. In these mice, mRNAs of several
genes including Sycpl, Sycp3, a-myb, Hox1.4, and Cycal
were reduced, all of which are important for normal pro-
gression of meiosis in germ cells. In addition, male germ
cells in mutant mice contain disrupted nuage and CB.
These results indicate the importance of MVH in the
maintenance of mRNA stability, translation, and TE
repression, as well as its role in regulating the RNP
structures [67].

Interestingly, PGCs of Mvh mutant mice reduced pro-
liferation more than twofold comparing to the wild type
during an in vitro proliferation assay. Expression of
pluripotent gene Pou5fl was also reduced dramatically
on E12.5, although AP staining remained the same as in
wild type [66]. These suggested that MVH may regulate
the proliferation and pluripotency of PGCs. Its role in
pluripotency regulation is exemplified in Planaria,
where increase of MVH was observed during tail regen-
eration assay, indicating its requirement for proliferation
and maintenance of neoblasts, the stem cells in the ani-
mal [68]. It is not clear whether MVH directly regulates
SSCs, but its effects on mRNAs of meiotic genes may
imply that it, at least in part, prevents the differentiation
of pluripotent germ cells via selectively regulating the
synthesis of proteins that “for” stemness and “against”
meiotic differentiation. Microarray analyses following
protein immunoprecipitation suggested that MVH
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targets over 800 mRNA species, including mRNAs for
proteins involved in spermatogenesis, energy metabolism
and translation regulation [69]. However, even among
the mRNAs expressed during meiotic development,
MVH selectively targets a subset of them. How is the se-
lectivity of MVH achieved? Studies suggested that func-
tions of MVH may be regulated by post-translational
modification of the protein. Both acetyltransferase
HAT1 and co-factor P46 modify residue Lys-405 of
MVH near the RNA-binding domains and inhibits its
RNA-binding activity when necessary [69]. The molecu-
lar mechanisms that govern integration of MVH func-
tions during RNA metabolism at varied steps of germ
cell development, particularly at the pluripotent stage,
remains to be further studied.

DDX RNA helicases and Tudor domain proteins

RNA helicases modulate the architecture of RNAs and
thus the accessibility of RNAs to proteins, such as RNA
modifying enzymes. Meantime, they also directly interact
with proteins and bring them to RNA regions that are
under regulation. In germ cells, RNA helicases have
been found to play pivotal functions during growth and
differentiation of germ cells. In human, there are more
than 90 DDX helicase genes, of which two thirds are
RNA-related [70]. DDX family proteins contain con-
served DExH or DExD box for their interaction with
RNA, through which they modulate structures of nucleic
acids and alter gene expression and protein translation.
They often depend on ATP for their helicase activity.
The most known DDX RNA helicase in the germline is
the aforementioned MVH. DDX proteins affect mRNA
metabolism on multiple levels due to their functional di-
versity. Studies have shown that they could participate in
regulating gene expression via direct binding with both
DNA and RNA. For example, DDX21 was recently
shown to regulate gene expression of ribosomal genes at
both transcriptional and post-transcriptional levels [71].
Several DDX proteins were found to interact with
miRNAs and mRNAs directly. Through recruiting
modulator protein complexes to the 5'- and 3'-UTRs
of mRNAs, they regulate mRNA stability and transla-
tion efficiency [72, 73]. DDX25 (GRTH) was found to
specifically express in spermatocytes and haploid sper-
matids in mouse. Deletion of the gene led to develop-
mental arrest of early elongating spermatids. Analyses
found that in the germ cells of mutant mice, mRNA
levels of several meiotic genes were comparable to
those of wild type mice, while their respective pro-
teins were depleted, consistent with its localization in
the CB and its role in regulating protein translation
and germ cell survival [74]. Although no DDX pro-
teins have been shown to directly participate in stem
cell regulation in mammals, planarian DDX proteins
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MVH and Spoltod were found to be important for
self-renewal and proliferation of neoblasts [75]. It will
be interesting to find out whether other DDX pro-
teins have direct roles in regulating male germline
stem cells in mammals.

Another group of RNA-modulating proteins that are
highly expressed in germ cells are Tudor domain “Royal
Family” proteins. In Drosophila, they are important for
germ cell differentiation. Deletion of Tudor caused loss
of germ cells [76]. In mouse, it was found that Tudor
proteins express mostly in meiotic spermatogenic cells
(from spermatocytes to elongating spermatids) and often
interact with PIWI proteins and participate in the regu-
lation of piRNA biogenesis, retrotransposon repression
and DNA methylation. Several Tudor proteins in the
germ cells are found to localize in RNA granules and the
CB, suggesting their roles in RNA-protein complex for-
mation and mRNA regulation [67]. Mutations of Tudor
genes have been shown to cause defects of male germ
cell development at early meiotic stages and disruption
of TE repression and mRNA stabilities [55, 77]. Despite
their wide range of expression during germ cell develop-
ment and participation in RNA metabolism, it is still not
clear whether Tudor proteins directly take part in regu-
lating stem cell functions. Their mode of activities in dif-
ferent cells and context requires further investigation.

Conclusions and perspectives
RNA-binding proteins possess conserved protein do-
mains that facilitate their interactions with ribonucleic
acids [78]. It is estimated that mammalian cells con-
tain over a thousand RBPs with a dozen different
RNA-binding domains. However, the number of RBPs
and their functional diversity are becoming increasingly
complex. New RBPs with canonical RNA-binding motifs
as well as novel RNA-binding proteins with no known do-
mains are being discovered [3, 79, 80]. Mutations in many
of the RBPs have been linked to human pathologies, in-
cluding aging and cancer, as well as neurological and mus-
cular disorders [81]. As demonstrated by the RBPs in
mouse germ cells, different RBPs can accomplish their
functions via different mechanisms. They can either re-
press or activate protein translation of mRNAs by binding
with different proteins that modify the untranslated re-
gions of mRNAs. Through conserved sequence motifs,
RBPs often regulate mRNAs with the same sequence fea-
tures and thus increase the efficiency of regulation by a
single protein. How the specificity and functional diversity
(repression vs. activation) of RBPs are achieved is one of
the central issues regarding molecular mechanisms that
govern RBPs.

Although the importance of transcription factors and
transcriptional regulation of gene expression are widely
accepted, post-transcriptional and translational regulations
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via RNA-binding proteins have several advantages. First,
mRNAs are regulated at multiple steps during their life
cycle, providing more opportunities to modulate their
functionality with flexibility and specificity for the inter-
pretation of genetic information. As RBPs can participate
in every steps of mRNA metabolism, molecular mecha-
nisms that govern their functions can be more versatile.
Second, unlike modifications of genome itself which often
lead to permanent changes of cells’ gene expression status
and aberrant changes can cause inheritable damages,
post-transcriptional and translational regulations provide
fine tuning of gene expression without changing cellular
identity at the genome level. This could be important for
intermediate cell types such as transient amplifying stem
cells and cells in post-cell cycle states. Third, since
mRNAs that already exist in the cells can be subjected to
functional modifications, translational regulation can
occur in a timely fashion in response to both intrinsic and
extrinsic stimuli. In fact, signaling pathways that are acti-
vated under different nutritional, energy, and stress status
often elicit their effects through regulation of protein
translation, such as AMPK and mTORC signaling path-
ways. Fourth, proteins often function in different subcellu-
lar localizations in geometrically asymmetric cells, such as
neurons, haploid spermatids, and epithelial cells. These re-
quire mRNAs to be modulated in response to localized
signals. During development, post-transcriptional and
translational regulations offer more subtle control for
growth and differentiation of cells. The gradual changes of
functionality of a particular cell type will lead to eventual
permanent change of cell identity as during the differenti-
ation of stem cells.

Many challenges lie ahead in the study of RBP
functions. Current knowledge on RBPs coming from
genetic, molecular, biochemical, and bioinformatics re-
search have facilitated our understanding of their
physiological functions, protein-protein interactions,
and domain-functional annotations. However, many
RBPs are multifunctional and dynamically regulated
within cells. Systems that allow real-time observation
of RBPs at subcellular or single molecule resolution
would be required for dissecting the temporal-spatial
changes of RBPs under different conditions. For the
same reason, animal models that allow analyses of
specific functions of RBPs in particular cell types and
developmental stages need to be established in order
to reveal the precise mechanisms by which they func-
tion. Recent development of cutting-edge technologies
has added important compliments to explore RBPs’ role
on an unprecedented scale. These include genome-wide
next-generation sequencing to dissect the exact quantity
and composition of RNA species in a cell at particular de-
velopmental times [82], RNA interactome-capturing to
systematically analyze RBPs to identify the regulators that
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determine translational status of a cell [3, 79, 80],
ribosomal-profiling for dissecting translational status of
cellular mRNAs [83], and proteomic analyses to uncover
the protein species and changes that occur during self-
renewal and differentiation of stem cells [84]. Exciting dis-
coveries are surely to come in years ahead of us.
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