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Abstract

The rapidly developmental RNA-guided CRISPR/Cas system is a powerful tool for RNA and DNA editing in a variety
of cells from different species and makes a great contribution to gene function research, disease model generation
and gene therapy development in the past few years. The ease of use, low cost and high efficiency of CRISPR/Cas
make it commonly used in various conditions. In this review, we introduce the CRISPR/Cas system and its diverse
applications in nervous system briefly, which provides a better understanding for its potential application values.

Background

The CRISPR/Cas system is gaining more and more
popularity in gene editing and therapy since first discov-
ered in 1987. Up to now, on one hand, different types of
the CRISPR/Cas system were discovered to improve its
size, editing efficiency and PAM limitations; on the other
hand, by fusing different factors to the mutant Cas pro-
tein which inactivates its nuclease activity but retains its
ability to bind a specific DNA target site by a guide
RNA, different types of engineered CRISPR/Cas9 tools
were developed to perform modification of a specific
gene, like DNA methylation or demethylation, histone
acetylation or deacetylation and so on. Here, we briefly
introduce these tools and their applications in the ner-
vous system.

Main Text

The CRISPR/Cas system

The Clustered regularly interspaced short palindromic
repeats (CRISPR) and CRISPR-associated system (Cas)
was first discovered in 1987 as a type of RNA-mediated
adaptively immunity to defend foreign nucleotides in
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bacteria and archaea (Ishino et al. 1987; Wiedenheft
et al. 2012) and later Charpentier, et al. revealed its po-
tential of RNA-programmable genome editing in 2012
because of its ability of making site-specific DNA
double-stranded breaks (DSBs) in vitro (Jinek et al.
2012). In the following year, researchers successfully
used the CRISPR/Cas system to edit genome in mamma-
lian cells, which indicated its strong application value in
genome editing (Cho et al. 2013; Cong et al. 2013; Mali
et al. 2013). Since then, the CRISPR/Cas system becomes
more and more widely used in genomic editing because
of its high efficiency, easy operation, low cost and di-
verse applications. Usually, CRISPR/Cas systems are di-
vided into 2 classes, including 6 types (Makarova et al.
2015; Shmakov et al. 2017; Koonin et al. 2017; Pickar-
Oliver and Gersbach 2019a), some of which are widely
used as editing tools.

The class 2 type II CRISPR/Cas9 is one of the most
popular editing tools, and simply composed of the
CRISPR RNA (crRNA), the trans-activating crRNA
(tracrRNA) and the Cas9 protein. In the engineered
CRISPR/Cas system, it is usually simplified by trans-
forming tracrRNA and crRNA into a chimeric single
guide RNA (sgRNA) (Jinek et al. 2012), which can also
direct the Cas9 to the target DNA sequence and cleave
the DNA by recognizing the protospacer adjacent motif
(PAM) based on Watson-Crick base pairing rules to edit
genomic DNA through non-homologous end joining
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(NHEJ) or homology-directed repair (HDR) (Jinek et al.
2012; Cong et al. 2013; Mojica et al. 2009; Marraffini
and Sontheimer 2010; Gasiunas et al. 2012; Doudna and
Charpentier 2014). The Streptococcus pyogenes Cas9
(SpCas9, 1368 amino acids) is first used for genome edit-
ing by recognizing a simple 5'-NGG (N represents A, T,
C or G) PAM (Jinek et al. 2012), however, its recognition
limits the availability of SpCas9 targeting specific sites in
the genome editing. To improve its availability, more
Cas9 proteins from other species are found and engi-
neered with various PAMs. For instance, Staphylococcus
aureus Cas9 (SaCas9, 1053 amino acids), Neisseria
meningitidis Cas9 (NmCas9, 1082 amino acids), Strepto-
coccus thermophilus Cas9 (StCas9, 1121 amino acids)
and Campylobacter jejuni Cas9 (CjCas9, 984 amino
acids) respectively recognize the PAM of 5'-NNGRRT
(R represents A or G), 5-NNNNGATT, 5-NNAG
AAW (W represents A or T), and 5 -NNNVRYM (V rep-
resents A, C or G; Y represents C or T) (Cong et al.
2013; Esvelt et al. 2013; Zhang et al. 2013; Hou et al.
2013; Ran et al. 2015; Friedland et al. 2015; Yamada
et al. 2017). The identification and improvement of Cas9
proteins that recognize different PAMs provides us more
target sites for genome editing. In addition, RCas9
(O'Connell et al. 2014), SaCas9 (Strutt et al. 2018),
CjCas9 (Dugar et al. 2018) and Francisella novicida
Cas9 (FnCas9) (Sampson et al. 2013; Price et al. 2015)
can also edit RNA at the same time.

In contrast with the CRISPR/Cas9 system, the Casl2a
(known as Cpfl), which belongs to the Class 2 type V
CRISPR-Cas system, is guided by the crRNA to the tar-
get site without the tracrRNA, and cleaves DNA in a
staggered way by recognizing a T-rich PAM of 5'-TTN
(Jinek et al. 2012; Garneau et al. 2010; Deltcheva et al.
2011; Chylinski et al. 2013; Zetsche et al. 2015). There
are two Cas12a orthologues, Acidaminococcus sp. Cas12a
(AsCasl2a, 1307 amino acids) and Lachnospiraceae bac-
terium Casl2a (LbCasl2a, 1228 amino acids), which
have efficiency activity of genome editing in mammalian
cells. The Casl2a can process its own crRNAs that
makes it easier to target multiple sites (Zetsche et al.
2017), and has less off-target effects, compared to Cas9
(Kim et al. 2016). In conclusion, the CRISPR/Cas12a of-
fers a choice of precise genomic modifications in the dif-
ferent applicational condition.

The recently discovered Casl3a is an RNA-targeting
nuclease and belongs to class 2 type VI CRISPR/Cas13
system. The Casl3a contains two higher conservative
eukaryotes and prokaryotes nucleotide-binding (HEPN)
domains, which is guided by a crRNA to the target
single-stranded RNA (ssRNA) and recognized by a H (H
represents A, U or C) protospacer flanking sequence
(PES) in the 3’ end of the target sequence (Abudayyeh
et al. 2016). Moreover, the Casl3b targets RNA to
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accomplish RNA cleavage by recognizing the double-
sided PFS (Smargon et al. 2017). The Cas13d provides a
higher efficiency of RNA targeting in various cells and
organisms at the optimal cleavage temperature 24 ~
41°C (Konermann et al. 2018). In addition, the CasRx
(Cas13d-NLS from Ruminococcus flavefaciens strain
XPD3002) with a smaller size can be easily packaged
into adeno-associated virus (AAV) and delivered to cells
and organisms (Konermann et al. 2018), which expands
the genome editing toolbox beyond DNA to RNA and
plays a critical role in nucleic acid engineering,
transcriptome-related study and therapy development.

Mechanisms and applications of the CRISPR/Cas system in
the nervous system

In the engineered CRISPR/Cas system, the Cas protein
combining with sgRNA can target the specific gene loci
and cut the DNA double-strand (DSB). Afterwards these
DSBs are predominantly repaired by the error-prone
non-homologous end joining (NHE]) in eukaryotes
(Wyman and Kanaar 2006; Pickar-Oliver and Gersbach
2019b), which bring about insertion or deletion (indels)
in the target loci, in turn, result in gene inactivation. In
addition, these DSBs are also repaired by homologous-
directed recombination (HDR) and microhomology-
mediated end joining (MMEJ) (Wyman and Kanaar
2006; Pickar-Oliver and Gersbach 2019b). If homologous
donor sequence including our interesting sequence like
gene markers tags or fluorescence protein are given dur-
ing repair process, these markers possibly insert to
sgRNA-targeted sites, which achieved site-specific inser-
tion (Pickar-Oliver and Gersbach 2019b). As a result, as
a new gene-editing tool, the CRISPR/Cas system has
been being focused by more and more researchers in-
cluding neuroscientists, since biological characterizations
of the Cas protein were first found enabled to edit genes
in 2012 (Jinek et al. 2012; Gasiunas et al. 2012).

The nervous system, as the most complex system in
animals and humans, still has many mysteries in biology
(Salles et al. 2019). For example, how does the nervous
system especially the brain develop at embryo and which
genes play essential roles in this process (Salles et al.
2019)? In addition, it is known that this system uses
electrical and chemical means to help all parts of the
body communicate with each other and performs many
functions like sleep and wakefulness, mood, learning and
memory, cognition and so on (Salles et al. 2019); how-
ever, many questions still need to be further explored,
such as how neurons and genes in the brain achieve
these functions. Besides, neuron typing also is a hard
question because the number of neurons is very large,
about 100 billion neurons in the humans brain (Hercu-
lano-Houzel 2009). When the CRISPR/Cas system is
identified as an efficient gene-editing tools, researchers
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can hardly wait to explore its application in the nervous
system and try their best to uncover these mysterious
masks. In the following, we mainly review uses of the
CRISPR/Cas system in the nervous system.

Knock-out and knock-in

Conventional methods of gene knock-out (KO) and
knock-in (KI) like homologous recombination and
LoxP/Cre-mediated conditional insertion and deletion
are money and time consuming as they need to generate
first chimeras and later KO or KI individuals (Doyle
et al. 2012). Later, RNA interference enriches methods
and saves time of gene knockout, although it still has
some limitations, such as it cannot totally eliminate ef-
fects of a gene but knockdown gene expression level
(Hannon 2002). However, the Cas-mediated tool shows
competitive advantages in gene KO and KI due to its ef-
ficiency, complete deletion and time saving (Heidenreich
and Zhang 2016).

Gene knock-out mediated by CRISPR/Cas in the ner-
vous system are being reported. For example, CRISPR/
sgRNA-mediated knockout successfully was achieved in
induced pluripotent stem cells (iPSC)-derived neurons
(Liu et al. 2016; Ortiz-Virumbrales et al. 2017), in brain
slice neurons in vitro (Incontro et al. 2014) and in neu-
rons in vivo (Shen et al. 2014; Swiech et al. 2015; Kalebic
et al. 2016; Heman-Ackah et al. 2016; Park et al. 2019).
Additionally, without limitations in the number of the
gene loci, knockout of multiple genes, multi-copy genes
and noncoding RNAs are achieved more easily than be-
fore. Typically, Amin, et al. identified functions of the
multi-copy microRNA miR-218 in motor neurons by
complete deletion with CRISPR/Cas (Amin et al. 2015).
Moreover, it get easier access to knockout model for
function identity of the gene in the nervous system, for
example, Cdk5 roles in cortex folding and Mettl3 in
neuronal differentiation were uncovered by its knockout
with the help of CRISPR/Cas (Batista et al. 2014; Shin-
myo et al. 2017). Moreover, CRISPR/Cas-mediated gene
knockout dramatically saves time and money in con-
struction of primate knockout model so that Prrt2-
knockout and Bmall-knockout monkeys were soon born
in the Institute of Neuroscience (ION) from Chinese
Academy of Sciences (Zuo et al. 2017; Qiu et al. 2019).

Specific insertion is becoming more convenient under
the help of CRISPR/Cas. In the next year that CRISPR/
Cas were used to edit genes, mice model carrying a
fluorescent marker in the endogenous OCT4, NANOG,
and SOX2 genes was one-step generated by injecting
Cas9 mRNA, different sgRNAs and donor DNA vectors
into zygotes (Yang et al. 2013), and mCherry knock-in
monkey also was constructed (Yao et al. 2018). Another,
Huntingtin knock-in pig model were also generated by
CRISPR/Cas, which enables us to mimic the feature of
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Huntingtin neurodegeneration which is unavailable in
the mice model (Yan et al. 2018a).

CRISPR/Cas are providing new strategies for study
and therapy of neurological diseases, especially genetic
disorders like Huntington’s disease (HD) and spinal
muscular atrophy (SMA). HD is characterized by early
striatal atrophy, which result from HTT level decreases
in the brain due to CAG repeat expansion in huntingtin
(HTT) gene (Jimenez-Sanchez et al. 2017). Earlier stud-
ies generated genetical HD mice models to simulate
HD-like phenotypes (Mangiarini et al. 1996; Schilling
et al. 1999; Ehrnhoefer et al. 2009), but there is still no
efficient treatment for HD. However, researchers re-
cently did not only generate HD pig model (Yan et al
2018a), but also eliminated mutant HTT protein and re-
lieved neuropathology by CRISPR/Cas-mediated inacti-
vation of mutant HTT gene in vitro model (Shin et al.
2016; Kolli et al. 2017) and in mice model (Monteys
et al. 2017; Yang et al. 2017), which provides promise for
its cure. Moreover, SMA, along with general weakness
and atrophy of spinal cord motor neurons and skeletal
muscles, is also a severe autosomal recessive disease
caused mainly by nucleotide mutations of the survival
motor neuron 1 (SMN1) gene (Bergin et al. 1997;
Schrank et al. 1997; Hamilton and Gillingwater 2013).
However, its symptoms can be alleviated when its dupli-
cate gene SMN2 is edited to increase SMN protein level
by delivering CRISPR/Cas-sgRNA to SMA mice zygotes
(Li et al. 2019), which give some cues for SMA treat-
ment by CRISPR technology. Besides, researchers are ex-
ploring new strategies for other neurological disease like
Parkinson’s disease by using the CRISPR system (Ortiz-
Virumbrales et al. 2017; Park et al. 2019).

Base editing

Cytidine deaminase and adenine deaminase can convert
cytosine into thymine (C to T) and adenine into guanine
(A to Q) separately. When they are fused to mutant Cas
protein which can bind DNA but not cleave DNA
double-strand, they can change base in the activity win-
dow of Cas protein, at the upstream of the protospacer
adjacent motif (PAM) (Komor et al. 2016; Gaudelli et al.
2017; Molla and Yang 2019). Base editing is based on
this principle. Considering PAM limitation to editing
sites, besides discovering different Cas proteins in nature
(Ma et al. 2019), numerous engineered Cas versions are
also developed to extend scope of base editing, for ex-
ample, the PAM of different SpCas9 variants SpCas9,
VQR- SpCas9, VRER-SpCas9 and EQR-SpCas9 are sep-
arately 5'-NGG, 5-NGAN or 5- NGNG, 5'-NGCG
and 5'-NGAG (Pickar-Oliver and Gersbach 2019b;
Molla and Yang 2019; Kleinstiver et al. 2015). In
addition, base editing activity also depends on deaminase
which has different activities on a genomic site (Cheng
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et al. 2019). As a result, proper composition of Cas pro-
tein and deaminase is important for accurate and effi-
cient base editing of different genes.

Noticeably, David Liu, et al. got up to 70% editing effi-
ciency by separately fusing improved cytidine deaminase
enzyme APOBECI and adenine deaminase TadA to mu-
tant SpCas9 (also called dead Cas9, dCas9) (Fig. 1la),
where they successfully converted an amino acid of
APOE4, a gene related to Alzheimer’s disease in vitro
(Komor et al. 2016; Gaudelli et al. 2017). Given no DSBs
and accurate editing, engineered Cas-mediated point
mutation shows potential advantages in correcting gen-
etic diseases including neurological diseases. In addition,
base editing provides a new strategy for inactivation of
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gene function by converting a protein-coding sequence
into a stop codon (Zhang et al. 2018a).

Epigenomic modification

Epigenomic modifications like DNA methylation/de-
methylation, histone acetylation/deacetylation and nu-
cleosome remodeling/positioning play important roles in
neuronal differentiation and diseases (Feng et al. 2007;
Zhou et al. 2018a). However, it is difficult to uncover
how these epigenomic modifications of the specific gene
loci affect gene functions in organisms with the conven-
tional gene KO tool like the LoxP/Cre system because
enzymes for epigenetic modification cannot target spe-
cific loci of genes, promotors or enhancers. CRISPR/

-
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Fig. 1 Schematic diagrams of the engineered Cas protein. a Base editors mediated by dead Cas9 (dCas9) with the separate fusion of the rat
cytidine deaminase APOBECT and adenine deaminase TadA. b Specific epigenomic modification tools generated by dCas9 respectively fused
with histone acetyltransferase P300, ten-eleven translocation methylcytosine dioxygenase 1 (Tet1) and lysine-specific histone demethylase 1
(LSD1). ¢ Different CRISPR activation (CRISPRa) tools. Fusing three transcriptional activators VP64, p65 and Rta to the dCas protein at the same
time can successfully activate multigene expression (left). Fusing two RNA hairpin aptamers which bind to dimers of the bacteriophage MS2 coat
proteins and additional activators such as p65 and the human heat shock factor 1 (HSF1) to sgRNA can recruit more activation molecules
(middle). Fusing 10 repeats of scFv (an activator module single-chain variable fragment) /p65/HSF1 to the dCas9 protein can more efficiently
active multigene expression (right)
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Cas9 has recently emerged as an unparalleled tool for
the interrogation of epigenome at individual loci, which
is fused to different factors to complete different modifi-
cation (Vora et al. 2016).

The dCas9-p300 system fusing dCas9 to histone ace-
tyltransferase P300 developed by Hilton, et al. efficiently
actives specific gRNA-targeted promotors and enhancers
(Fig. 1b) (Hilton et al. 2015). In addition, dCas9 fusing to
the catalytic domain of ten-eleven translocation methyl-
cytosine dioxygenase 1 (Tetl) (Fig. 1b) or DNA methyl-
transferase DNMT3A efficiently methylate specific loci
in vivo and in vitro (Valton et al. 2012; Vojta et al. 2016;
McDonald et al. 2016), while dCas9 fusing to lysine-spe-
cific histone demethylase 1 (LSD1) (Fig. 1b) repressed
expression of genes Oct4 and Tbxl by targeting their
enhancers, in turn to affected the cellular state of embry-
onic stem cells (Kearns et al. 2015). In conclusion, these
systems have many potential applications in exploring
epigenomic editing and regulation in neuronal develop-
ment without causing global alterations (Zentner and
Henikoff 2015; Pulecio et al. 2017).

Another epigenomic modification, RNA editing, is also
enriched because of the discovery of the RNA-targeting
Cas system such as the Casl3 protein. The Casl13 family
can cut RNA strand by its nuclease domain, following
targeting the specific loci mediated by the sgRNA (Cox
et al. 2017; Yan et al. 2018b; Zhang et al. 2018b). Be-
cause of its small size, researchers show much interests
in mRNA editing by the modified Casl3d protein.
Cheng, et al. fused the splicing factor Foxl element to
dCas13d in order to inhibit Exon 7 skipping of SMN2
(Jillette and Cheng 2018), which gives new insights in
SMA cures.

Regulation of gene expression

The dCas9 protein is also further fused to different tran-
scription activation or inactivation domains, which con-
structs different CRISPR activation (CRISPRa) and
CRISPR interference (CRISPRi) systems to regulate gene
expression (Chavez et al. 2016). The most used CRISPRa
system fused the dCas9 protein to three transcriptional
activators VP64, p65 and Rta at the same time, which is
proved successful to activate multigene expression to in-
duce neuronal differentiation of human iPSCs (Fig. 1c)
(Chavez et al. 2015). Moreover, sgRNAs also are modi-
fied by adding two RNA hairpin aptamers. They bind to
dimers of the bacteriophage MS2 coat proteins which
are fused to additional activators such as p65 and the
human heat shock factor 1 (HSF1) to recruit more acti-
vation molecules for each dCas9 molecule and higher ef-
ficiently amplify multigene expression (Fig. 1c) (La Russa
and Qi 2015). Zhou, et al. successfully achieved tran-
scriptional activation of multiple genes in the mamma-
lian developmental brain and efficiently converted
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astrocytes into functional neurons in vivo by improved
CRISPRa systems (Zhou et al. 2018b). In the contrary,
fusing the Kriippel-associated box of the transcriptional
repressor Kox1l (Krab) to dCas9 can effective repress
gene expression in cells (Fig. 1c) (Gilbert et al. 2013; Gil-
bert et al. 2014). Zheng, et al. used the CRISPRi tool to
conditionally repress synaptotagmin I (Sytl) and found
that the dentate gyrus of the hippocampus has distinct
regulatory roles in learning and affective processes in
mice (Zheng et al. 2018).

Inducible regulation

Fusing promotors like doxycycline- or light-dependent
promotors to dCas9 achieves inducible regulation of
Cas9 expression, in turn to regulate turn-on and turn-off
of the Cas-based editing system. Doxycycline-inducible
dCas9-based system has been used in reversible disease
modelling in iPSC-derived cardiomyocytes, while the
light-inducible dCas9-based system induced neuronal
differentiation successfully (Mandegar et al. 2016;
Nihongaki et al. 2017; Shao et al. 2018). This suggests
that the inducible system achieves more precise regula-
tion in specific gene expression in cell fate, neuronal dif-
ferentiation or nervous disease.

High-throughput screen

The modified Cas9 system can efficiently change expres-
sion levels of large-scale genes through targeting them
by sgRNA libraries, which makes a breakthrough to an-
notate functional characterizations of genetic elements
in neuronal differentiation, normal neurobiological pro-
cesses and diseases. Liu, et al. identified transcription
factors that efficiently promote neuronal fate of ESCs by
high-throughput CRISPRa screening with serial pooled
sgRNA libararies, while Tian, et al. revealed neuron-
specific roles of genes for survival, transcriptomics states,
and morphology by CRISPRi-based knockdown with a
pooled sgRNA libarary (Liu et al. 2018; Tian et al. 2019).

Future directions

CRISPR/Cas-based gene editing has been widely used in
the nervous system because of its high efficiency, easy
operation, low cost and diverse application, which help
us uncover mysterious masks of various neurons and
neuronal diseases. However, some potential risks still
cannot be ignored. Firstly, DNA cleavage with the Cas
endonuclease facilitates small insertions or deletions of
nucleotides in unwanted sites (Zhang et al. 2015) and
the cytosine/adenine deaminase may target non-specific
RNA (Grunewald et al. 2019; Zhou et al. 2019; Zuo et al.
2019). These off-target editing may confound experi-
ment results if it existed in a CRISPR-based animal
model and could permanently disrupt normal gene func-
tion and lead to unpredictable complications if it is
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located in a patient’s DNA during CRISPR-based treat-
ment. Secondly, considering the size of the Cas gene, it
is difficult to enter cells directly. At present, Cas-sgRNA
is addressed into cells mainly by liposome, virus vectors,
ribonucleoprotein and so on, which have some draw-
backs like limitation in size of the cargo, delivery effi-
ciency and safety (Lino et al. 2018). In the future, more
and more focus will be put on exploring hard neurobio-
logical problems, correcting genetic diseases and per-
forming cell therapies in the nervous system with
CRISPR/Cas-based methods by overcoming its risks.
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