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Abstract

The pathological feature of diabetes, hyperglycemia, is a result of an inadequate number and/or function of insulin
producing β cells. Replenishing functional β cells is a strategy to cure the disease. Although β-cell regeneration
occurs in animal models under certain conditions, human β cells are refractory to proliferation. A better
understanding of both the positive and the negative regulatory mechanisms of β-cell regeneration in animal
models is essential to develop novel strategies capable of inducing functional β cells in patients. Zebrafish are an
attractive model system for studying β-cell regeneration due to the ease to which genetic and chemical-genetic
approaches can be used as well as their high regenerative capacity. Here, we highlight the current state of β-cell
regeneration studies in zebrafish with an emphasis on cell signaling mechanisms.

Background
An absolute or relative deficiency of functional insulin pro-
ducing β cells is the pathological feature of both types of
diabetes (Weir et al., 1990). Although the disease conditions
can be managed by a number of drugs including insulin,
insulin sensitizers, and glucose reabsorption inhibitors,
current treatments are insufficient to prevent diabetic com-
plications and can cause side effects, even when closely
followed (Pothineni & M. J., 2015; Corathers et al., 2013).
Restoring functional β-cell mass may cure both type 1 and
type 2 diabetes. Indeed, transplanting cadaveric islets gives
recipients several years of insulin independence (Shapiro,
2000). The scarcity of compatible cadaveric donors and life-
long immune suppression limit its broad application. A
heavily investigated alternative source is β cells derived
from human embryonic stem cells or induced pluripotent
stem cells (Rezania et al., 2012; Pagliuca et al., 2014;
Benthuysen et al., 2016). Despite tremendous progress,
these β-like cells are still inferior to β cells from donors
(Tremmel et al., 2019). Even if fully functional β cells can
be generated in mass quantities, their preservation after

transplantation may still require immunosuppression. An
alternative to in vitro β-cell production is induction of
endogenous regeneration (Aguayo-Mazzucato & Bonner-
Weir, 2018). Unlike in vitro generated β-like cells, in vivo
generated β cells situate in their natural environment, inte-
grate into the intricate paracrine regulatory network in the
islet, and deliver insulin directly to the portal vein. As such,
they will likely function better. Recent studies in animal
models suggest that in vivo β-cell regeneration is a viable
approach to replenish β-cell mass in diabetic models
(Aguayo-Mazzucato & Bonner-Weir, 2018).
Pancreatic β-cell regeneration occurs physiologically in

conditions of increased insulin demand such as preg-
nancy (Toselli et al., 2014; Kim et al., 2010; Karnik et al.,
2007; Parsons et al., 1992) and obesity (Yamamoto et al.,
2017; Bonner-Weir, 2000; Liu et al., 2017). Regeneration
also occurs in experimentally induced conditions of
insufficient insulin function, such as partial pancreatec-
tomy (Togashi et al., 2014; Noèlia & Eduard, 2014), β-
cell ablation (Cheng et al., 2015; Thorel et al., 2010), and
insulin receptor antagonist treatment (Jiao et al., 2014).
Three general mechanisms of in vivo β-cell regeneration
have been reported in animal models: self-replication or
proliferation, neogenesis or progenitor differentiation,
and transdifferentiation (Aguayo-Mazzucato & Bonner-
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Weir, 2018). Proliferation refers to the generation of
new β cells from existing ones by cell division. It is the
predominant mode of β-cell expansion from late gastru-
lation to adulthood in rodents (Dor et al., 2004; Teta
et al., 2007). Neogenesis refers to the generation of β
cells from endocrine progenitors. This occurs during
development as well as in adults (Bonner-Weir et al.,
2012; Huising et al., 2018). Transdifferentiation refers to
β-cell production from differentiated non-β cells, usually
from a cell type of related lineage such as pancreatic
endocrine cells, hepatocytes, and intestinal endocrine
cells. It occurs in certain conditions such as severe β-cell
depletion and under some drug treatments (Thorel
et al., 2010; Chera et al., 2014; Lee et al., 2018). Although
evidence for all 3 mechanisms of β-cell regeneration exists
(Bonner-Weir et al., 2010; Inada et al., 2008; Bouwens
et al., 1994), it is generally believed that proliferation is the
predominant mechanism (Dor et al., 2004; Teta et al.,
2007). However, with advance of age, the capacity of β-cell
proliferation and regeneration rapidly declines (Perl et al.,
2010; Chen et al., 2011; Swenne, 1983). A recent finding
revealed that the decline is accompanied by an increase of
DNA methylation in β cells (Avrahami et al., 2015).
Compared to rodents, adult human β cells are resistant

to proliferation. Once reaching a peak by early adult-
hood, human β-cell mass remains steady with very slow
turnover (Butler et al., 2003; Gregg et al., 2012; Kassem
et al., 2000). However, evidence of adult islet plasticity in
response to insulin resistance exists (Mezza et al., 2019).
Attempts to enhance human β-cell proliferation have
been hindered by inadequate knowledge of the signaling
pathways that promote cell cycle progression and pre-
vent cell cycle reentry (Bernal-Mizrachi et al., 2014;
Kulkarni et al., 2012; Stewart et al., 2015). What causes
the resistance of human β-cell proliferation is not
known. Thus, it is of paramount importance to identify
signaling pathways that can specifically activate β-cell
proliferation as well as pathways that confer its mitotic
resistance for developing treatment targeting these
pathways.
Zebrafish have been extensively used for understand-

ing vertebrate biology and human diseases. This is due
to many experimental advantages the model possesses. It
is highly tractable genetically because of fecundity and
oviparous reproduction. Highly efficient mutagenesis
and transgenesis can be achieved with minimal training
and commonly available reagents and equipment. As
such, a large number of mutant and transgenic lines are
available at nominal cost from various resource centers.
Rapid development of translucent embryos makes zebra-
fish a favorable model organism for research, as many
developmental events can be directly visualized. The
small size of the embryo/larvae makes them compatible
with chemical screening as they can be housed in

microtiter plates for treatment and the anatomical or
behavioral results can be easily observed. In addition to
developmental biology, zebrafish have been increasingly
used for modeling human diseases for mechanistic inves-
tigations and drug development (Lam Pui-Ying, 2019).
The zebrafish pancreas exhibits a remarkable capacity

for regeneration (Delaspre et al., 2015; Ghaye et al.,
2015; Moss et al., 2009). Recent findings in zebrafish β-
cell regeneration have helped us understanding signaling
pathways and transcription factors involved in β-cell
neogenesis, transdedifferentiation and proliferation
(Fig. 1). We will review these studies based on the
methods employed to trigger β-cell formation (Table 1).

A primer on zebrafish β-cell development
The zebrafish and mammalian pancreas show striking
similarities in the molecular control of development,
cellular and subcellular architecture, and physiological
function (Pauls et al., 2007; Pack et al., 1996; Kinkel &
Prince, 2009; Parsons et al., 2009). Like mammals, the
zebrafish pancreas derives from the dorsal and ventral
buds of pdx1-expressing foregut endoderm cells. The
principal islet is formed at 24 h post-fertilization (hpf) by
the coalescence of scattered endocrine cells from the
first wave of differentiation in the dorsal bud that
emerges before 18 hpf (Wang et al., 2011; Biemar et al.,
2001; Kimmel et al., 2011). The first wave of β cells are mi-
totically quiescent and functionally immature (Hesselson
et al., 2009). The principle islet undergoes further expansion

Fig. 1 Cell sources for in vivo generation of β cells in zebrafish. Cells
in the extrapancreatic duct linking the pancreas to the gut (EPD)
differentiate into endocrine progenitor cells that form the ventrally
derived β cells in the principal islet. Centroacinar cells (CACs) are a
specialized ductal pancreatic cell type that differentiates into
progenitors of acinar, ductal, and endocrine cells. Under certain
conditions, new β cells can be generated through
transdifferentiation, neogenesis and proliferation
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with endocrine cells from the second wave of differentiation
starting at 40 hpf from the ventral bud-derived cells
(Hesselson et al., 2009), which also gives rise to acinar
and ductal cells (Field et al., 2003). However, suppres-
sion of Ptf1a activity during pancreatic development
induces acinar to endocrine conversion (Hesselson
et al., 2011; Dong et al., 2008). The principal islet con-
tinues to expand with endocrine cells differentiated
from the FGF-responsive extrapancreatic duct (EPD)
at the head of the pancreas between 2 to 5 days post-
fertilization (dpf) (Kimmel et al., 2011; Chung et al.,
2010; Dong et al., 2007), and secondary islets form
after 5 dpf from endocrine progenitors derived from
the pancreatic Notch-responsive cells (PNCs) in the
intrapancreatic ductal cells (IPDs) as the pancreas
expands caudally (Parsons et al., 2009; Wang et al.,
2011), as well as from β-cell proliferation (Ninov et al.,
2013; Tsuji et al., 2014). Whether EPD continues to
contribute to principal islet expansion is unknown. In-
hibition of Notch signaling causes precocious endo-
crine differentiation and secondary islet formation
(Parsons et al., 2009). Modulating the duration and/or
extent of Notch signaling inhibition can uncouple
amplification and differentiation of the progenitor
(Ninov et al., 2012). In addition to endocrine progeni-
tors, these specialized ductal PNCs are also the source
of other ductal cells, acinar cells, and centroacinar
cells (CACs) in adults, and are morphologically similar
to CACs (Delaspre et al., 2015). CACs are situated at
the tips of the pancreatic duct inside the acinus and
contribute to endocrine cell regeneration after β-cell
ablation or partial pancreatectomy (Wang et al., 2011;
Beer et al., 2016).
It is believed that β-cell proliferation is the predom-

inant mechanism for expanding adult β cells in mice
(Dor et al., 2004; Stamateris et al., 2013; Dor, 2006).
However, in zebrafish larvae, β-cell proliferation is not
predominant and is dependent on developmental
stages and physiological states (Singh et al., 2017).
Most advantages of zebrafish over other vertebrate
models only hold true in larvae. Early larval zebrafish
have only one (principal) islet. This allows rapid ana-
lysis of cell number changes. Combined with other
already discussed advantages, zebrafish have allowed
several groups to identify small molecule modulators
and molecular mechanisms of β-cell regeneration
(Andersson et al., 2012; Wang et al., 2015; Moon et al.,
2020). Nevertheless, the compounds identified in zeb-
rafish may provide new therapies and help identify
new therapeutic targets for β-cell regeneration therapy
in patients. Here, we highlight some of these studies
according to the stimulus of β-cell generation. We
emphasize the signaling mechanisms leading to β-cell
formation in these models, which provide a potential

avenue for the development of anti-diabetic drugs
through in vivo β-cell regeneration.

β-Cell induction by physiological stimuli
Insulin signaling
The β-cell deficit of Type 2 diabetics may be due to in-
sufficient β-cell production during development and/or
defective compensatory β-cell production in response to
insulin resistance (Costes et al., 2013). Therefore, under-
standing physiological β-cell generation is critical for
comprehension, prediction, and possibly prevention of
diabetes susceptibility.
A key regulator of β-cell number is insulin signaling.

Insufficient insulin signaling increases both β-cell num-
ber and function to maintain glucose homeostasis
(Maddison et al., 2015; Yang et al., 2017; Ye et al.,
2016). Defect or breakdown of the compensatory re-
sponse is the root cause of type 2 diabetes. Although
the mechanisms of this compensatory response are not
fully delineated, both β-cell extrinsic and intrinsic
mechanisms have been proposed (Mezza et al., 2019).
The compensatory response is conserved in zebrafish
(Yang et al., 2017; Ye et al., 2016). For example, elimin-
ation of the insulin receptor by concurrent inactivation
of both insulin receptors (insra and insrb) leads to an
increase of β cells (Yang et al., 2017). This compensa-
tory response occurs as early as the first wave of β-cell
differentiation. Blocking insulin activity by knocking
down insra, expressing a dominant-negative IRS2, or
exposure to the AKT2 inhibitor from early embryogen-
esis all cause a significant increase of β cells as early as
24 hpf at the expense of α-cell differentiation (Ye et al.,
2016). Similarly, suppressing insulin signaling only in
skeletal muscle, a major insulin sensitive tissue, also
leads to an increase of β-cell number (Maddison et al.,
2015). In this case, the increase occurs later and more
gradually, likely due to the tissue restricted insulin re-
sistance. The increase of β cells is at least in part due to
proliferation (Maddison et al., 2015).

Nutrient stimulated β-cell generation
β cells are nutrient sensors. Nutrient ingestion stimulates
insulin secretion and increases insulin demand. Two
groups have demonstrated that nutrients stimulate β-cell
production in larval zebrafish (Maddison & Chen, 2012;
Ninov et al., 2013). By culturing 6 or 18 dpf larvae in 5%
fresh chicken egg yolk for 8 h, Maddison and Chen
showed a rapid increase of β cells by the end of culture.
Co-incubation with 5-ethynyl-2′-deoxyuridine (EdU) did
not identify proliferating β cells, indicating that the in-
crease is due to neogenesis (Maddison & Chen, 2012).
The neogenesis is caused by persistent stimulation of
existing β cells since activation of the nutrient-secretion
coupling system either pharmacologically or genetically
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also increased β-cell production (Li et al., 2014). This sug-
gests a non-cell autonomous mechanism in which existing
β cells emit a signal to induce differentiation of the yet un-
identified responding progenitors, likely the EPD cells,
PNCs or its descendants. Using candidate drug screen, the
group identified FGF1 as the β-cell signal responsible for
induction of β-cell neogenesis (Li et al., 2016). Re-
expression of human FGF1 in β cells rescues the defective
response in fgf1−/− fish. Mechanistically, persistent stimu-
lation of β cells causes mild ER stress, which triggers
FGF1 secretion (Li et al., 2016). Ninov and colleagues
demonstrated nutrient-dependent β-cell production in
older zebrafish larvae (Ninov et al., 2013). At 15 dpf when
the larvae were fed with a high calorie diet, more second-
ary islets formed than in larvae fed with a low-calorie diet.
The β cells were generated from NRCs and at least in part
from proliferation. Both neogenesis and proliferation re-
quire nutrients and can be inhibited by fasting or rapamy-
cin (Ninov et al., 2013), indicating a role for mTORC1
activity. It is likely overnutrition or a high calorie diet also
induces neogenesis and proliferation in adults, but such
studies have not been reported.

Microbiota
The gut microbiota has been shown to influence verte-
brate development and physiology (Lynch & Pedersen,
2016). Zebrafish gut microbiota is established after
hatching and can be suppressed using antibiotics (Rawls
et al., 2004). Recently, the Guillemin lab reported an
interesting finding that demonstrated a role for the
microbiota in early pancreatic β-cell development (Hill
et al., 2016). Germ-free zebrafish have fewer β cells than
the control. The β-cell number can be normalized by the
addition of bacteria that express a conserved previously
undescribed secreted protein, BefA (β-Cell Expansion
Factor A). Intriguingly, when added in the medium,
recombinant BefA, a protein of 261 residues, could re-
store β-cell number in germ-free larvae to control levels.
BefA homologs from the human gut microbiome display
similar activity in zebrafish. BefA seems to induce more
EdU-positive β cells indicative of proliferation, although
EdU was applied for 48 h and the labeling could be from
endocrine progenitor cells (Hill et al., 2016). It will be
interesting to determine whether the activity requires
the entire protein or only a fragment. Equally interesting
is the BefA signaling mechanism. For example, it may
stimulate β cells directly or cause insulin resistance in
other tissues.

Chemical induced β-cell generation
While nutrient-induced β-cell generation is important
for establishing robust β-cell mass before the onset of
diabetes, it has limited therapeutic potential. By contrast,
drug-induced in vivo β-cell generation has tremendous

therapeutic potential. A number of chemical screens to
induce β-cell generation in zebrafish have been reported
(Andersson et al., 2012; Rovira et al., 2011; Shen et al.,
2013). The Parsons lab uses precocious secondary islet
formation as the readout for increased β-cell neogenesis
(Rovira et al., 2011). By exposing larvae from 2.5 dpf to
5 dpf to more than 3000 compounds, they identified 6
hits. Two of the hits, DSF and MPA, have been approved
for the treatment of alcohol abuse and immunosuppres-
sion, respectively. Further analysis demonstrated that
DSF acts by suppressing retinoic acid synthesis while
MPA acts by lowering cellular GTP levels by inhibiting
inosine 5′-monophosphate dehydrogenase (IMPDH)
(Rovira et al., 2011). The Parsons and Mumm groups de-
veloped a high-throughput screen using signal intensity
of an insulin promoter driven fluorescent protein in
transgenic larvae as the readout (Wang et al., 2015). By
exposing the transgenic larvae to individual compounds
from 3 to 7 days of age, they identified 24 hits from over
3000 compounds. Some of the compounds induced
precocious secondary islets, which suggests they pro-
mote neogenesis. Two NF-KB inhibitors are in this
group, indicating suppression of NF-KB promotes β-cell
differentiation. Other drugs specifically increased β-cell
number without accelerating secondary islet formation.
Several of these compounds activated the serotonergic
signaling pathway and promoted β-cell proliferation
(Wang et al., 2015).
Compounds that specifically promote β-cell differenti-

ation are more desirable. It is well established that inhib-
ition of Notch signaling in the Notch-responsive ductal
cells promote endocrine progenitor differentiation,
resulting in the production of all islet endocrine cell
types (Parsons et al., 2009). By co-administering a Notch
inhibitor along with more than 2000 compounds from 3
dpf to 5 dpf, Liu et al. identified a CDK5 inhibitor that
specifically enhanced β-cell differentiation (Liu et al.,
2018). Inhibition of CDK5 also enhanced β-cell differen-
tiation in mouse islet explants, in mice with pancreatic
ductal ligation, and in human iPS cells (Liu et al., 2018).
To identify compounds that promote β-cell prolifera-

tion directly, the Stainier lab adopted the FUCCI system
to mark proliferating β cells (Tsuji et al., 2014). They
found that during the first 6 days of development β cells
are mitotically quiescent except for two stages, 36 hpf
and 144 hpf. By exposing embryos to more than 2000
compounds from 72 to 96 hpf, they identified 20 small
molecules that enhance β-cell proliferation during the
quiescent period. Of note, most of the compounds affect
serotonin, retinoic acid or the glucocorticoids signaling
pathway, with the latter two groups also promoting β-
cell proliferation after ablation (Tsuji et al., 2014). The
serotonergic pathway has been shown to mediate adult
β-cell proliferation during pregnancy (Kim et al., 2010)
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and perinatal β-cell proliferation (Moon et al., 2020) in
mice through HTR2B. The identification of the seroto-
nergic pathway from two independent zebrafish screens
further validates the relevance of this approach (Wang
et al., 2015; Janjuha et al., 2018).

Ablation-induced β-cell regeneration
Type 1 diabetes results from complete or near complete
β-cell loss. In zebrafish, complete or near complete β-
cell loss by pancreatectomy or drug-induced killing
causes robust β-cell regeneration (Delaspre et al., 2015;
Moss et al., 2009; Andersson et al., 2012; Curado et al.,
2007). These regenerated β cells are from neogenesis,
proliferation, and α- to β-cell transdifferentiation. Un-
derstanding the molecular mechanisms underlying this
response may shed light on ways to induce β-cell regen-
eration in Type 1 diabetes patients, if autoimmunity can
be controlled.
Several genes, sox9b, dnmt1, gcg and fh1b, have been

found to play an important role in ablation-induced β-
cell regeneration (Manfroid et al., 2012; Anderson
et al., 2009; Ye et al., 2015; Li et al., 2009). Manfroid
and colleagues found that ablation-induced β-cell re-
generation is severely impaired in sox9b mutants. This
is because Sox9b is critical for the formation of the
PNCs and CACs (Manfroid et al., 2012; Huang et al.,
2016). Anderson and colleagues found ablation-induced
β-cell regeneration is surprisingly enhanced in dnmt1
mutant larvae, suggesting decreased DNA methylation
promotes β-cell regeneration (Anderson et al., 2009). In
mice, near complete β-cell ablation triggers α- or δ- to
β-cell transdifferentiation (Thorel et al., 2010; Chera
et al., 2014). However, the Anderson group showed that
only α cells, but not δ cells, contributed to β-cell regen-
eration after β-cell ablation in zebrafish (Ye et al.,
2015). Using a combination of pharmacological and
morpholino antisense oligonucleotide-mediated knock-
down approaches, they demonstrated that the α-cell
transdfferentiation was dependent on glucagon but in-
dependent of gluconeogenesis (Ye et al., 2015). This
may explain the findings of Li and colleagues, who
demonstrated that persistent killing of β cells by insulin
promoter-directed expression of diphtheria toxin A
chain also decreased α cells (Li et al., 2009). Lu et al.
found that after β-cell ablation, igfbp1 expression is in-
creased. Igfbp1 could potently promote β-cell regener-
ation by triggering α- to β-cell transdifferentiation via
inhibiting the IGF signaling pathway (Lu et al., 2016).
This IGFBP1 function is conserved in mice and human
islets (Lu et al., 2016). Another gene that regulates β-
cell neogenesis is fhl1b 91. fhl1b mutants have enhanced
β-cell regeneration due to increased pdx1 and neurod
expression in the EPD (Xu et al., 2016).

Chemicals that promote β-cell regeneration after ablation
may be exploited for novel drug development. Because
pancreatectomy is labor-intensive and incompatible with
chemical screens, all chemical screens used metronidazole
(MTZ)-mediated ablation of β cells expressing a fluorescent
protein fusion of bacterial nitroreductase (NTR) (Curado
et al., 2007; Pisharath et al., 2007). Ablation can be done
easily by adding MTZ in the medium. The fluorescent pro-
tein also provides a marker for the ablation efficiency and a
readout of the subsequent regeneration. Using this system,
the Stainier group screened more than 7000 compounds
and identified NECA as a compound that markedly in-
creases β-cell regeneration (Andersson et al., 2012). It does
so by activating adensosine GPCR signaling. Both neogen-
esis and proliferation contribute to β-cell regeneration.
Although this compound only had a limited capacity to
induce β-cell proliferation in larval zebrafish, it can potently
induce β-cell proliferation in a streptozotocin (STZ)-in-
duced mouse T1D model (Andersson et al., 2012). In
addition, pharmacological and genetic disruption of the
A2a receptor diminished β-cell proliferation during preg-
nancy in mice (Schulz et al., 2016). In another screen using
a similar system, the Shin lab screened 75 compounds and
identified BX795 as a stimulator of β-cell regeneration (Xu
et al., 2018). Further analyses indicated that BX795 acts by
inhibiting TBK1/IKKε. This finding led to the identification
of an even more potent compound known to inhibit
TBK1/IKKε, PIAA. PIAA primarily increased β-cell prolif-
eration in zebrafish and a STZ-induced mouse T1D model.
Further mechanistic studies revealed that PIAA inhibits
TBK1/IKKε phosphorylation of PDE3, resulting in activa-
tion of PKA and its target mTORC1, leading to β-cell spe-
cific proliferation (Xu et al., 2018).

Factors that limit β-cell proliferation
Like in mammals, β-cell proliferation in zebrafish also de-
clines with age (Janjuha et al., 2018). Comparing β cells
from younger and older zebrafish, aging islets exhibit signs
of chronic inflammation (Janjuha et al., 2018). Further in-
vestigation indicates that β cells with high NF-kB signaling
proliferate significantly less compared to their neighbors
with low activity. The cells with active NF-kB signaling
also exhibit premature upregulation of socs2, an age-
related gene that inhibits β-cell proliferation (Janjuha
et al., 2018). Another potential limitation of β-cell replica-
tion is insufficient activity of cyclin-dependent kinase 4
(CDK4). This may be due to age-dependent increased ex-
pression of cyclin-dependent kinase inhibitors in β cells,
such as p27 (Georgia & Bhushan, 2006), p21 (Fatrai et al.,
2006), and p16 (Helman et al., 2016), as observed in mice.
By ectopically expressing in β cells a mutant CDK4
(CDK4R24C) that is insensitive to inhibition by cyclin-
dependent kinase inhibitors, β-cell number could be in-
creased through enhanced proliferation (Li et al., 2013).
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Conclusion
Replenishment of new glucose-responsive β cells is the
best therapeutic approach to cure diabetes. Here, we
summarized the recent advances in β-cell regeneration
in vivo using the zebrafish model. Distinguishing the cell
sources for in vivo generation of β cells and understand-
ing the mechanisms underlying these processes are of
great importance for designing strategies to achieve a β-
cell based cure.

Perspective
In vivo β-cell regeneration is a potential cure for both
types of diabetes. However, there is still much that needs
to be done before this strategy can be implemented.
Continued drug screening efforts in zebrafish will likely
contribute to its eventual success. In addition to screen-
ing larger compound libraries, future zebrafish studies
should also address the toxicity and specificity of the
identified compounds. Translation to humans should re-
main the focus. For any given compound that promotes
β-cell regeneration in zebrafish, its efficacy and specifi-
city should be assessed in rodents as some of the previ-
ous studies have done (Schulz et al., 2016; El Ouaamari
et al., 2016). Except for these that promote neogenesis,
the compounds should also be tested on human islets
whenever possible. Since multiple pathways may be in-
volved in limiting proliferation of, or transdifferentiation
to, human β cells, combined treatment of multiple com-
pounds may be productive. Positive human islet data
should pave the way for clinical trials and subsequent
drug approval.
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