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Abstract

Some lower vertebrates such as zebrafish and axolotl have incredible cardiac regenerative potential while mammals
have very limited ones. Comparative studies among species have revealed that cardiomyocyte polyploidy, endothermy,
and injury-induced activation of certain transcriptional factors including AP1 complexes are critical for cardiomyocyte
proliferation and heart regeneration during animal evolution. Gaining insights into these evolutionarily conserved
mechanisms will likely lead to achieving heart regeneration in non-regenerative mammals including humans.

Regenerative potential in the animal kingdom is a fundamen-
tal topic of regenerative biology and medicine. With the de-
velopment of genome science and genetics technology, many
investigators started to address how regenerative potential is
lost or gained during the evolutionary courses of particular
animal species. It is now documented that either whole-
animal or organ regeneration is achieved by activating adult
stem cells (such as hydra and planarians; blood, skins, skel-
etal muscles, and livers in vertebrates), by inducing Muller
glia reprogramming into neurons in adult zebrafish retinas,
or by promoting cardiomyocyte (CM) proliferation in adult
zebrafish hearts, and neonatal mouse, rat, and pig hearts
(Beisaw et al. 2020; Duncan and Sanchez Alvarado 2019;
Goldman and Poss 2020; Hoang et al. 2020; Tzahor and
Poss 2017; Wang et al. 2020). In this short opinion article,
we review several recent studies on evolutionary insights
into heart regeneration that may be exploited for promot-
ing non-regenerative heart regeneration.
Most mammalian cardiomyocytes (CMs) are mononuclear

diploid CMs during development, but they become mostly
polyploid CMs at late gestation or early postnatal stages. The
appearance of CM polyploidy conincides with the loss of car-
diac regenerative potential in mice, rats, and pigs (Gan et al.
2020). However, it remains largely unknown whether CM

polyploidy is a causative factor for the loss of cardiac regen-
erative potential. A recent work has reported that the fre-
quency of adult mononuclear diploid cardiomyocytes
(MDCMs) is highly correlated to the cardiac regenerative po-
tential in a large collection of 120 inbred mouse strains (Pat-
terson et al. 2017). The authors meticulously assessed the
percentage of MDCMs in 120 mouse strains, ranging from
2% to 18% MDCMs, and they then found that the more
MDCMs, the better their hearts regenerate, with increased
CM proliferation after myocardial infarction (MI). Genome-
wide association analysis has revealed that Tnni3k is associ-
ated with this phenotype, which is further supported by
assessing the percentage of MDCMs, CM proliferation, and
the distribution of diploid and polyploid CMs in cardiac-
specific Tnni3k knockout mice after MI. Nevertheless, they
did not find improvement in cardiac function and fibrosis in
these mutant mice compared with control siblings post MI.
On the other hand, they found that CMs are primarily dip-
loids in zebrafish and cardiac-specific overexpression of zeb-
rafish tnni3k leads to more CM polyploidy and loss of their
regenerative capacity after ventricular resection. Similarly,
transient inhibition of cytokinesis by cardiac-specific overex-
pression of dominant-negative Ect2 results in more CM
polyploidy and compromised cardiac regeneration in zebra-
fish (Gonzalez-Rosa et al. 2018). Together, these works
present new mechanistic insights into the causative effect of
CM polyploidy on heart regeneration.
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Another elegant work has reported that the loss of cardiac
regenerative potential is highly related with CM polyploidiza-
tion via phylogenetic analysis of CM nucleation and poly-
ploidy in a large collection of non-vertebrates and vertebrates,
and the percentage of MDCMs inversely correlates with
metabolic rate, body temperature, and serum total thyroid
hormone T4 levels (Hirose et al. 2019). They have further
demonstrated that cardiac-specific inhibition of thyroid hor-
mone receptor a (Thra) increases CM proliferation and the
percentage of MNCMs in neonatal and adult mice, and re-
sults in an evident improvement in cardiac function and fi-
brosis after myocardial ischemic reperfusion in adult mice.
Consistently, exogenous application of thyroid hormone T3
inhibits heart regeneration with evident CM polyploidization
and decreased CM proliferation in zebrafish. Thus, thyroid
hormone signaling promotes CM polyploidy and decreases
cardiac regenerative potential during animal evolution.
As illustrated above, cardiac regenerative potential in-

versely correlates with CM polyploidization and postnatal
endothermy/body temperature during animal evolution.
While having learned a great deal of signaling pathways in
regulating CM proliferation and heart regeneration, we still
have very limited knowledge on the roles of non-coding
DNA elements in heart regeneration, which are quite diverse
during evolutionary species. Comparing with previous stud-
ies on searching for regenerative enhancers from different
organ regeneration processes in zebrafish (Goldman et al.
2017; Kang et al. 2016; Thompson et al. 2020), Sánchez
Alvarado and colleagues have recently reported the isolation
of 49 conserved regenerative enhancers in the hearts and fins
between killifish and zebrafish, which a good fraction of
these 49 enhancers are also conserved in regenerative mouse
strain acomys cahirinus but not non-regenerative mouse
strain mus musculus (Wang et al. 2020). They have reported
that the enhancer inhba is highly conserved between regen-
erative zebrafish (Z-IEN) and killifish (K-IEN) but not in
non-regenerative humans (H-IEN), and this enhancer is acti-
vated in the progenitors of blastema during fin regeneration.
Genetic depletion of this enhancer in killifish (K-IEN)
suggests its essential roles in both heart and fin regen-
eration. Further bioinformatics analysis identified that
AP-1 binding sites are enriched in these 49 regenerative
enhancers and are also essential for regeneration. To-
gether with other works (Beisaw et al. 2020; Gehrke
et al. 2019), the AP-1 complexes appear to be evolu-
tionarily conserved and injury-induced transcription
factors for heart regeneration.
In brief, these recent studies have utilized comparative

studies on heart regeneration among evolutionary spe-
cies, leading to identifying critical factors such as thyroid
hormones and cytokinesis factor (Tnni3k) for regulating
CM nucleation and polyploidization, as well as non-
coding DNA elements (regenerative enhancers) and
binding factors (AP-1 complexes) for regulating CM

proliferation. These and future studies will likely reveal a
network of transcription factors and enhancers for co-
ordinating CM proliferation and heart regeneration. In
addition to these critical factors and regenerative en-
hancers, the field will take advantage of genome editing
and chemical biology approaches to identify factors and
small molecules that are sufficient for promoting non-
regenerative heart regeneration in the coming years.
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