Fortini ME: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 2009, 16: 633–47. 10.1016/j.devcel.2009.03.010
Article
CAS
PubMed
Google Scholar
Kopan R, Ilagan MX: The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009, 137: 216–33. 10.1016/j.cell.2009.03.045
Article
CAS
PubMed Central
PubMed
Google Scholar
Loyer N, Le Borgne R, S Le Bras: The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic 2011, 12: 149–61. 10.1111/j.1600-0854.2010.01126.x
Article
PubMed
Google Scholar
Weinmaster G, Fischer JA: Notch ligand ubiquitylation: what is it good for? Dev Cell 2011, 21: 134–44. 10.1016/j.devcel.2011.06.006
Article
CAS
PubMed Central
PubMed
Google Scholar
D’Souza B, Meloty-Kapella L, Weinmaster G: Canonical and non-canonical Notch ligands. Curr Top Dev Biol 2010, 92: 73–129.
Article
PubMed Central
PubMed
Google Scholar
Yamamoto S, Charng WL, Bellen HJ: Endocytosis and intracellular trafficking of Notch and its ligands. Curr Top Dev Biol 2010, 92: 165–200.
Article
CAS
PubMed
Google Scholar
Cullen PJ: Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 2008, 9: 574–82. 10.1038/nrm2427
Article
CAS
PubMed
Google Scholar
Cullen PJ, Korswagen HC: Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2011, 14: 29–37. 10.1038/ncb2374
Article
PubMed Central
PubMed
Google Scholar
Attar N, Cullen PJ: The retromer complex. Adv Enzyme Regul 2010, 50: 216–36. 10.1016/j.advenzreg.2009.10.002
Article
PubMed
Google Scholar
Coudreuse DY, Roel G, Betist MC, Destree O, Korswagen HC: Wnt gradient formation requires retromer function in Wnt-producing cells. Science 2006, 312: 921–4. 10.1126/science.1124856
Article
CAS
PubMed
Google Scholar
Prasad BC, Clark SG: Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 2006, 133: 1757–66. 10.1242/dev.02357
Article
CAS
PubMed
Google Scholar
Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X: The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 2008, 14: 120–31. 10.1016/j.devcel.2007.12.003
Article
CAS
PubMed
Google Scholar
Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice MM, Vincent JP: Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol 2008, 10: 170–7. 10.1038/ncb1678
Article
CAS
PubMed
Google Scholar
Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga G: C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell 2008, 14: 132–9. 10.1016/j.devcel.2007.12.001
Article
CAS
PubMed Central
PubMed
Google Scholar
Port F, Kuster M, Herr P, Furger E, Banziger C, Hausmann G, Basler K: Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol 2008, 10: 178–85. 10.1038/ncb1687
Article
CAS
PubMed
Google Scholar
Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC: Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell 2008, 14: 140–7. 10.1016/j.devcel.2007.12.004
Article
CAS
PubMed
Google Scholar
Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JR, van Heesbeen RG, Middelkoop TC, Basler K, et al.: A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 2011, 13: 914–23. 10.1038/ncb2281
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang P, Wu Y, Belenkaya TY, Lin X: SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res 2011, 21: 1677–90. 10.1038/cr.2011.167
Article
CAS
PubMed Central
PubMed
Google Scholar
Temkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M: SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 2011, 13: 715–21.
Article
PubMed Central
PubMed
Google Scholar
Stockinger W, Sailler B, Strasser V, Recheis B, Fasching D, Kahr L, Schneider WJ, Nimpf J: The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. Embo J 2002, 21: 4259–67. 10.1093/emboj/cdf435
Article
CAS
PubMed Central
PubMed
Google Scholar
Williams R, Schluter T, Roberts MS, Knauth P, Bohnensack R, Cutler DF: Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol Biol Cell 2004, 15: 3095–105. 10.1091/mbc.E04-02-0143
Article
CAS
PubMed Central
PubMed
Google Scholar
Donoso M, Cancino J, Lee J, van Kerkhof P, Retamal C, Bu G, Gonzalez A, Caceres A, Marzolo MP: Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol Biol Cell 2009, 20: 481–97. 10.1091/mbc.E08-08-0805
Article
CAS
PubMed Central
PubMed
Google Scholar
Adachi H, Tsujimoto M: Adaptor protein sorting nexin 17 interacts with the scavenger receptor FEEL-1/stabilin-1 and modulates its expression on the cell surface. Biochim Biophys Acta 2010, 1803: 553–63. 10.1016/j.bbamcr.2010.02.011
Article
CAS
PubMed
Google Scholar
Steinberg F, Heesom KJ, Bass MD, Cullen PJ: SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J Cell Biol 2012, 197: 219–30. 10.1083/jcb.201111121
Article
CAS
PubMed Central
PubMed
Google Scholar
Bottcher RT, Stremmel C, Meves A, Meyer H, Widmaier M, Tseng HY, Fassler R: Sorting nexin 17 prevents lysosomal degradation of beta1 integrins by binding to the beta1-integrin tail. Nat Cell Biol 2012, 14: 584–92. 10.1038/ncb2501
Article
PubMed
Google Scholar
Marusic MB, Ozbun MA, Campos SK, Myers MP, Banks L: Human Papillomavirus L2 facilitates viral escape from late endosomes via Sorting Nexin 17. Traffic 2011, 13: 455–67.
Article
Google Scholar
Zecchin E, Filippi A, Biemar F, Tiso N, Pauls S, Ellertsdottir E, Gnugge L, Bortolussi M, Driever W, Argenton F: Distinct delta and jagged genes control sequential segregation of pancreatic cell types from precursor pools in zebrafish. Dev Biol 2007, 301: 192–204. 10.1016/j.ydbio.2006.09.041
Article
CAS
PubMed
Google Scholar
Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, et al.: Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 2003, 4: 67–82. 10.1016/S1534-5807(02)00409-4
Article
CAS
PubMed
Google Scholar
Zhou S, Fujimuro M, Hsieh JJ, Chen L, Miyamoto A, Weinmaster G, Hayward SD: SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol Cell Biol 2000, 20: 2400–10. 10.1128/MCB.20.7.2400-2410.2000
Article
CAS
PubMed Central
PubMed
Google Scholar
Nofziger D, Miyamoto A, Lyons KM, Weinmaster G: Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 1999, 126: 1689–702.
CAS
PubMed
Google Scholar
Ghai R, Mobli M, Norwood SJ, Bugarcic A, Teasdale RD, King GF, Collins BM: Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc Natl Acad Sci U S A 2011, 108: 7763–8. 10.1073/pnas.1017110108
Article
CAS
PubMed Central
PubMed
Google Scholar
Fournier KM, Gonzalez MI, Robinson MB: Rapid trafficking of the neuronal glutamate transporter, EAAC1: evidence for distinct trafficking pathways differentially regulated by protein kinase C and platelet-derived growth factor. J Biol Chem 2004, 279: 34505–13. 10.1074/jbc.M404032200
Article
CAS
PubMed
Google Scholar
Emery G, Hutterer A, Berdnik D, Mayer B, Wirtz-Peitz F, Gaitan MG, Knoblich JA: Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 2005, 122: 763–73. 10.1016/j.cell.2005.08.017
Article
CAS
PubMed
Google Scholar
Jafar-Nejad H, Andrews HK, Acar M, Bayat V, Wirtz-Peitz F, Mehta SQ, Knoblich JA, Bellen HJ: Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev Cell 2005, 9: 351–63. 10.1016/j.devcel.2005.06.010
Article
CAS
PubMed
Google Scholar
Windler SL, Bilder D: Endocytic internalization routes required for delta/notch signaling. Curr Biol 2010, 20: 538–43. 10.1016/j.cub.2010.01.049
Article
CAS
PubMed Central
PubMed
Google Scholar
Banks SM, Cho B, Eun SH, Lee JH, Windler SL, Xie X, Bilder D, Fischer JA: The functions of auxilin and Rab11 in Drosophila suggest that the fundamental role of ligand endocytosis in notch signaling cells is not recycling. PLoS One 2011, 6: e18259. 10.1371/journal.pone.0018259
Article
CAS
PubMed Central
PubMed
Google Scholar
Pocha SM, Wassmer T, Niehage C, Hoflack B, Knust E: Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr Biol 2011, 21: 1111–7. 10.1016/j.cub.2011.05.007
Article
CAS
PubMed
Google Scholar
Nichols JT, Miyamoto A, Olsen SL, D’Souza B, Yao C, Weinmaster G: DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol 2007, 176: 445–58. 10.1083/jcb.200609014
Article
CAS
PubMed Central
PubMed
Google Scholar
Yamamoto M, Morita R, Mizoguchi T, Matsuo H, Isoda M, Ishitani T, Chitnis AB, Matsumoto K, Crump JG, Hozumi K, et al.: Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development 2010, 137: 2527–37. 10.1242/dev.051011
Article
CAS
PubMed Central
PubMed
Google Scholar
Westerfield M: The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon, Eugene; 1995.
Google Scholar