Acharyya S, Butchbach MER, Sahenk Z, Wang H, Saji M, Carathers M, Ringel MD, Skipworth RJE, Fearon KCH, Hollingsworth MA, Muscarella P, Burghes AHM, Rafael-Fortney JA, Guttridge DC. Dystrophin glycoprotein complex dysfunction: A regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell. 2005;8(5):421–32. https://doi.org/10.1016/j.ccr.2005.10.004.
Article
CAS
PubMed
Google Scholar
Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI. Increased Production of Immature Myeloid Cells in Cancer Patients: A Mechanism of Immunosuppression in Cancer. J Immunol. 2001;166(1):678–89. https://doi.org/10.4049/jimmunol.166.1.678.
Article
CAS
PubMed
Google Scholar
Andreotti, J. P., Silva, W. N., Costa, A. C., Picoli, C. C., Bitencourt, F. C. O., Coimbra-Campos, L. M. C., Resende, R. R., Magno, L. A. V., Romano-Silva, M. A., Mintz, A., & Birbrair, A. Neural stem cell niche heterogeneity. In Seminars in Cell and Developmental Biology 2019 (Vol. 95, pp. 42–53). Elsevier Ltd. https://doi.org/10.1016/j.semcdb.2019.01.005
Armignacco R, Cantini G, Poli G, Guasti D, Nesi G, Romagnoli P, Mannell M, Luconi M. The adipose stem cell as a novel metabolic actor in adrenocortical carcinoma progression: Evidence from an in vitro tumor microenvironment crosstalk model. Cancers. 2019;11(12):1931. https://doi.org/10.3390/cancers11121931.
Article
CAS
PubMed Central
Google Scholar
Arnold L, Henry A, Poron F, Baba-Amer Y, Van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69. https://doi.org/10.1084/jem.20070075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asp ML, Tian M, Kliewer KL, Belury MA. Rosiglitazone delayed weight loss and anorexia while attenuating adipose depletion in mice with cancer cachexia. Cancer Biol Ther. 2011;12(11):957–65. https://doi.org/10.4161/cbt.12.11.18134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asp ML, Tian M, Wendel AA, Belury MA. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int J Cancer. 2010;126(3):756–63. https://doi.org/10.1002/ijc.24784.
Article
CAS
PubMed
Google Scholar
Aversa Z, Costelli P, Muscaritoli M. Cancer-induced muscle wasting: Latest findings in prevention and treatment. In Therapeutic Advances in Medical Oncology. 2017;9(5):369–82. https://doi.org/10.1177/1758834017698643 (SAGE Publications Inc).
Article
Google Scholar
Aversa Z, Pin F, Lucia S, Penna F, Verzaro R, Fazi M, Colasante G, Tirone A, Fanelli FR, Ramaccini C, Costelli P, Muscaritoli M. Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep. 2016;6:1. https://doi.org/10.1038/srep30340.
Article
CAS
Google Scholar
Baazim H, Schweiger M, Moschinger M, Xu H, Scherer T, Popa A, Gallage S, Ali A, Khamina K, Kosack L, Vilagos B, Smyth M, Lercher A, Friske J, Merkler D, Aderem A, Helbich TH, Heikenwälder M, Lang PA, Bergthaler A. CD8+ T cells induce cachexia during chronic viral infection. Nat Immunol. 2019;20(6):701–10. https://doi.org/10.1038/s41590-019-0397-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baltgalvis KA, Berger FG, Pena MMO, Davis JM, Muga SJ, Carson JA. Interleukin-6 and cachexia in ApcMin/+ mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology. 2008;294(2):R393-401. https://doi.org/10.1152/ajpregu.00716.2007.
Article
CAS
Google Scholar
Belloum Y, Rannou-Bekono F, Favier FB. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). In Oncology Reports. 2017;37(5):2543–52. https://doi.org/10.3892/or.2017.5542 (Spandidos Publications).
Article
CAS
Google Scholar
Belury MA. Cardiac alterations in cancer-induced cachexia in mice. Int J Oncol. 2010;37(2):347–53. https://doi.org/10.3892/ijo_00000683.
Article
CAS
PubMed
Google Scholar
Berardi E, Aulino P, Murfuni I, Toschi A, Padula F, Scicchitano BM, Coletti D, Adamo S. Skeletal muscle is enriched in hematopoietic stem cells and not inflammatory cells in cachectic mice. Neurol Res. 2008;30(2):160–9. https://doi.org/10.1179/174313208X281046.
Article
CAS
PubMed
Google Scholar
Bindels LB, Beck R, Schakman O, Martin JC, de Backer F, Sohet FM, Dewulf EM, Pachikian BD, Neyrinck AM, Thissen JP, Verrax J, Calderon PB, Pot B, Grangette C, Cani PD, Scott KP, Delzenne NM. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS ONE. 2012;7(6):e37971. https://doi.org/10.1371/journal.pone.0037971.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bindels LB, Delzenne NM. Muscle wasting: The gut microbiota as a new therapeutic target? In International Journal of Biochemistry and Cell Biology. 2013;45(10):2186–90. https://doi.org/10.1016/j.biocel.2013.06.021 (Elsevier Ltd).
Article
CAS
Google Scholar
Biswas AK, Acharyya S. Understanding cachexia in the context of metastatic progression. Nat Rev Cancer. 2020;20(5):274–84. https://doi.org/10.1038/s41568-020-0251-4 (Nature Research 2020).
Article
CAS
PubMed
Google Scholar
Bonetto A, Kays JK, Parker VA, Matthews RR, Barreto R, Puppa MJ, Kang KS, Carson JA, Guise TA, Mohammad KS, Robling AG, Couch ME, Koniaris LG, Zimmers TA. Differential bone loss in mouse models of colon cancer cachexia. Front Physiol. 2017;7:679. https://doi.org/10.3389/fphys.2016.00679.
Article
PubMed
PubMed Central
Google Scholar
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev. 2018;39(5):760–802. https://doi.org/10.1210/er.2018-00064 (Oxford University Press).
Article
PubMed
Google Scholar
Broadwell RD, Sofroniew MV. Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system. Exp Neurol. 1993;120(2):245–63. https://doi.org/10.1006/exnr.1993.1059.
Article
CAS
PubMed
Google Scholar
Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin Cell Dev Biol. 2016;54:42–52. https://doi.org/10.1016/j.semcdb.2015.10.038 (Academic Press).
Article
PubMed
Google Scholar
Burfeind KG, Zhu X, Norgard MA, Levasseur PR, Huisman C, Buenafe AC, Olson B, Michaelis KA, Torres ERS, Jeng S, McWeeney S, Raber J, Marks DL. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. Elife. 2020;9:1–27. https://doi.org/10.7554/eLife.54095.
Article
Google Scholar
Cai D, Frantz JD, Tawa NE, Melendez PA, Oh BC, Lidov HGW, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell. 2004;119(2):285–98. https://doi.org/10.1016/j.cell.2004.09.027.
Article
CAS
PubMed
Google Scholar
Cantini G, Di Franco A, Mannelli M, Scimè A, Maggi M, Luconi M. The Role of Metabolic Changes in Shaping the Fate of Cancer-Associated Adipose Stem Cells. Frontiers in Cell and Developmental Biology. 2020;8:15. https://doi.org/10.3389/fcell.2020.00332FrontiersMediaS.A.
Article
Google Scholar
Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Investig. 2019;129(8):3006–17. https://doi.org/10.1172/JCI127201 (American Society for Clinical Investigation 2019).
Article
PubMed
PubMed Central
Google Scholar
Capoccia BJ, Robson DL, Levac KD, Maxwell DJ, Hohm SA, Neelamkavil MJ, Bell GI, Xenocostas A, Link DC, Piwnica-Worms D, Nolta JA, Hess DA. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113(21):5340–51. https://doi.org/10.1182/blood-2008-04-154567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin Cell Dev Biol. 2016;54:53–67. https://doi.org/10.1016/j.semcdb.2015.11.005 (Academic Press).
Article
CAS
PubMed
Google Scholar
Casbon AJ, Reynau D, Park C, Khu E, Gan DD, Schepers K, Passegué E, Werb Z. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA. 2015;112(6):E566–75. https://doi.org/10.1073/pnas.1424927112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chance WT, Xiao C, Dayal R, Sheriff S. Alteration of NPY and Y1 receptor in dorsomedial and ventromedial areas of hypothalamus in anorectic tumor-bearing rats. Peptides. 2007;28(2):295–301. https://doi.org/10.1016/j.peptides.2006.10.018.
Article
CAS
PubMed
Google Scholar
Chen JA, Splenser A, Guillory B, Luo J, Mendiratta M, Belinova B, Halder T, Zhang G, Li YP, Garcia JM. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J Cachexia Sarcopenia Muscle. 2015;6(2):132–43. https://doi.org/10.1002/jcsm.12023.
Article
PubMed
PubMed Central
Google Scholar
Cole CL, Kleckner IR, Jatoi A, Schwarz E, Dunne RF. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM Clinical Reports. 2018;3(2):1–9. https://doi.org/10.17987/jcsm-cr.v3i2.65.
Article
Google Scholar
Coll AP, Farooqi IS, O’Rahilly S. The Hormonal Control of Food Intake. Cell. 2007;129(2):251–62. https://doi.org/10.1016/j.cell.2007.04.001 (Elsevier B.V).
Article
CAS
PubMed
PubMed Central
Google Scholar
Coss CC, Clinton SK, Phelps MA. Cachectic cancer patients: Immune to checkpoint inhibitor therapy? Clin Cancer Res. 2018;24(23):5787–9. https://doi.org/10.1158/1078-0432.CCR-18-1847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costamagna D, Duelen R, Penna F, Neumann D, Costelli P, Sampaolesi M. Interleukin-4 administration improves muscle function, adult myogenesis, and lifespan of colon carcinoma-bearing mice. J Cachexia Sarcopenia Muscle. 2020;11(3):783–801. https://doi.org/10.1002/jcsm.12539.
Article
PubMed
PubMed Central
Google Scholar
da Pinheiro CHJ, de Queiroz JCF, Guimarães-Ferreira L, Vitzel KF, Nachbar RT, de Sousa LGO, de Souza-Jr AL, Nunes MT, Curi R. Local Injections of Adipose-Derived Mesenchymal Stem Cells Modulate Inflammation and Increase Angiogenesis Ameliorating the Dystrophic Phenotype in Dystrophin-Deficient Skeletal Muscle. Stem Cell Reviews and Reports. 2012;8(2):363–74. https://doi.org/10.1007/s12015-011-9304-0.
Article
CAS
PubMed
Google Scholar
Das SK, Hoefler G. The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med. 2013;19(5):292–301. https://doi.org/10.1016/j.molmed.2013.02.006 (Elsevier).
Article
CAS
PubMed
PubMed Central
Google Scholar
De Lima TM, Ramos Lima MM, Almeida DCG, Mendonça JR, Curi R. Cachexia induced by Walker 256 tumor growth causes rat lymphocyte death. Cancer Immunology. 2005;54(2):179–86. https://doi.org/10.1007/s00262-004-0570-4.
Article
CAS
Google Scholar
Deschoolmeester V, Baay M, Van Marck E, Weyler J, Vermeulen P, Lardon F, Vermorken JB. Tumor infiltrating lymphocytes: An intriguing player in the survival of colorectal cancer patients. BMC Immunol. 2010;11(1):19. https://doi.org/10.1186/1471-2172-11-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dias GP, Hollywood R, Do Nascimento Bevilaqua M, Da Silveira Da Luz ACD, Hindges R, Nardi AE, Thuret S. Consequences of cancer treatments on adult hippocampal neurogenesis: Implications for cognitive function and depressive symptoms. Neuro Oncol. 2014;16(4):476–92. https://doi.org/10.1093/neuonc/not321OxfordUniversityPress.
Article
Google Scholar
Diffee GM, Kalfas K, Al-Majid S, McCarthy DO. Altered expression of skeletal muscle myosin isoforms in cancer cachexia. American Journal of Physiology - Cell Physiology. 2002;283(5):52–5. https://doi.org/10.1152/ajpcell.00154.2002.
Article
Google Scholar
Dwarkasing JT, Boekschoten MV, Argilès JM, van Dijk M, Busquets S, Penna F, Toledo M, Laviano A, Witkamp RF, van Norren K. Differences in food intake of tumour-bearing cachectic mice are associated with hypothalamic serotonin signalling. J Cachexia Sarcopenia Muscle. 2015;6(1):84–94. https://doi.org/10.1002/jcsm.12008.
Article
PubMed
PubMed Central
Google Scholar
El Razi Neto S, Zorn TMT, Curi R, Carpinelli AR. Impairment of insulin secretion in pancreatic islets isolated from Walker 256 tumor-bearing rats. American Journal of Physiology. 1996;271(3):40–3. https://doi.org/10.1152/ajpcell.1996.271.3.c804.
Article
Google Scholar
Elgert KD, Alleva DG, Mullins DW. Tumor-induced immune dysfunction: The macrophage connection. Journal of Leukocyte Biology. 1998;64(3):275–90. https://doi.org/10.1002/jlb.64.3.275 (Federation of American Societies for Experimental Biology).
Article
CAS
PubMed
Google Scholar
Evano B, Tajbakhsh S. Skeletal muscle stem cells in comfort and stress. npj Regenerative Medicine. 2018;3(1):1–3. https://doi.org/10.1038/s41536-018-0062-3 (Nature 2018).
Article
Google Scholar
Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nature Reviews Cardiology. 2015;12(9):547–58. https://doi.org/10.1038/nrcardio.2015.65 (Nature 2015).
Article
CAS
PubMed
Google Scholar
Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nature Reviews Clinical Oncology. 2013;10(2):90–9. https://doi.org/10.1038/nrclinonc.2012.209.
Article
CAS
PubMed
Google Scholar
Fearon KCH, Glass DJ, Guttridge DC. Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metabolism. 2012;16(2):153–66. https://doi.org/10.1016/j.cmet.2012.06.011.
Article
CAS
PubMed
Google Scholar
Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE. Definition and classification of cancer cachexia: An international consensus. The Lancet Oncology. 2011;12(5):489–95. https://doi.org/10.1016/S1470-2045(10)70218-7.
Article
PubMed
Google Scholar
Flint TR, Janowitz T, Connell CM, Roberts EW, Denton AE, Coll AP, Jodrell DI, Fearon DT. Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity. Cell Metab. 2016;24(5):672–84. https://doi.org/10.1016/j.cmet.2016.10.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fouladiun M, Körner U, Bosaeus I, Daneryd P, Hyltander A, Lundholm KG. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care - Correlations with food intake, metabolism, exercise capacity, and hormones. Cancer. 2005;103(10):2189–98. https://doi.org/10.1002/cncr.21013.
Article
PubMed
Google Scholar
Friesen DE, Baracos VE, Tuszynski JA. Modeling the energetic cost of cancer as a result of altered energy metabolism: Implications for cachexia. Theoretical Biology and Medical Modelling. 2015;12(1):1–8. https://doi.org/10.1186/s12976-015-0015-0.
Article
CAS
Google Scholar
Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. In Frontiers in Neuroendocrinology. 2012;33(1):116–25. https://doi.org/10.1016/j.yfrne.2011.12.002.
Article
CAS
Google Scholar
Gao X, Wang Y, Lu F, Chen X, Yang D, Cao Y, Zhang W, Chen J, Zheng L, Wang G, Fu M, Ma L, Song Y, Zhan Q. Extracellular vesicles derived from oesophageal cancer containing P4HB promote muscle wasting via regulating PHGDH/Bcl-2/caspase-3 pathway. Journal of Extracellular Vesicles. 2021;10(5):e12060. https://doi.org/10.1002/jev2.12060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia JM, Garcia-Touza M, Hijazi RA, Taffet G, Epner D, Mann D, Smith RG, Cunningham GR, Marcelli M. Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia. J Clin Endocrinol Metab. 2005;90(5):2920–6. https://doi.org/10.1210/jc.2004-1788.
Article
CAS
PubMed
Google Scholar
Glass DJ. Signaling pathways perturbing muscle mass. Current Opinion in Clinical Nutrition and Metabolic Care. 2010;13(3):225–9. https://doi.org/10.1097/MCO.0b013e32833862df.
Article
CAS
PubMed
Google Scholar
Grecian R, Whyte MKB, Walmsley SR. The role of neutrophils in cancer. British Medical Bulletin. 2018;128(1):5–14. https://doi.org/10.1093/bmb/ldy029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hain BA, Xu H, Wilcox JR, Mutua D, Waning DL. Chemotherapy-induced loss of bone and muscle mass in a mouse model of breast cancer bone metastases and cachexia. JCSM Rapid Communications. 2019;2(1):1–12. https://doi.org/10.1002/j.2617-1619.2019.tb00011.x.
Article
Google Scholar
Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. In International Journal of Biochemistry and Cell Biology. 2013;45(10):2333–47. https://doi.org/10.1016/j.biocel.2013.05.019.
Article
CAS
Google Scholar
Han L, Liu J, Zhu L, Tan F, Qin Y, Huang H, Yu Y. Free fatty acid can induce cardiac dysfunction and alter insulin signaling pathways in the heart. Lipids in Health and Disease. 2018;17(1):1–8. https://doi.org/10.1186/s12944-018-0834-1.
Article
CAS
Google Scholar
He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, Wang J, Bloomston M, Muscarella P, Nau P, Shah N, Butchbach MER, Ladner K, Adamo S, Rudnicki MA, Keller C, Coletti D, Montanaro F, Guttridge DC. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Investig. 2013;123(11):4821–35. https://doi.org/10.1172/JCI68523.
Article
CAS
PubMed
PubMed Central
Google Scholar
He WA, Calore F, Londhe P, Canella A, Guttridge DC, Croce CM. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 2014;111(12):4525–9. https://doi.org/10.1073/pnas.1402714111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. https://doi.org/10.1126/science.1160809.
Article
CAS
Google Scholar
Honors MA, Kinzig KP. The role of insulin resistance in the development of muscle wasting during cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle. 2012;3(1):5–11. https://doi.org/10.1007/s13539-011-0051-5 (Wiley Online Library).
Article
PubMed
Google Scholar
Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor α inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA. 1994;91(11):4854–8. https://doi.org/10.1073/pnas.91.11.4854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu DJK, Jasper H. Epithelia: Understanding the Cell Biology of Intestinal Barrier Dysfunction. Current Biology. 2017;27(5):R185–7. https://doi.org/10.1016/j.cub.2017.01.035.
Article
CAS
PubMed
Google Scholar
Hu W, Ru Z, Zhou Y, Xiao W, Sun R, Zhang S, Gao Y, Li X, Zhang X, Yang H. Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids. 2019;1864(8):1091–102. https://doi.org/10.1016/j.bbalip.2019.04.006.
Article
CAS
PubMed
Google Scholar
Hume DA. The mononuclear phagocyte system. Current Opinion in Immunology. 2006;18(1):49–53. https://doi.org/10.1016/j.coi.2005.11.008.
Article
CAS
PubMed
Google Scholar
Imai K, Takai K, Miwa T, Taguchi D, Hanai T, Suetsugu A, Shiraki M, Shimizu M. Rapid depletions of subcutaneous fat mass and skeletal muscle mass predictworse survival in patients with hepatocellular carcinoma treated with sorafenib. Cancers. 2019;11(8):1206. https://doi.org/10.3390/cancers11081206.
Article
CAS
PubMed Central
Google Scholar
Inaba S, Hinohara A, Tachibana M, Tsujikawa K, Fukada S. Muscle regeneration is disrupted by cancer cachexia without loss of muscle stem cell potential. PLoS ONE. 2018;13(10):1–15. https://doi.org/10.1371/journal.pone.0205467.
Article
CAS
Google Scholar
Jablonska J, Lang S, Sionov RV, Granot Z. The regulation of pre-metastatic niche formation by neutrophils. Oncotarget. 2017;8(67):112132–44. https://doi.org/10.18632/oncotarget.22792.
Article
PubMed
PubMed Central
Google Scholar
Jones A, Friedrich K, Rohm M, Schäfer M, Algire C, Kulozik P, Seibert O, Müller-Decker K, Sijmonsma T, Strzoda D, Sticht C, Gretz N, Dallinga-Thie GM, Leuchs B, Kögl M, Stremmel W, Diaz MB, Herzig S. TSC22D4 is a molecular output of hepatic wasting metabolism. EMBO Mol Med. 2013;5(2):294–308. https://doi.org/10.1002/emmm.201201869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP. Why cachexia kills: Examining the causality of poor outcomes in wasting conditions. Journal of Cachexia, Sarcopenia and Muscle. 2013;4(2):89–94. https://doi.org/10.1007/s13539-013-0111-0.
Article
PubMed
PubMed Central
Google Scholar
Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100–4. https://doi.org/10.1038/nature13528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laird, B. J., McMillan, D., Skipworth, R. J. E., Fallon, M. T., Paval, D. R., McNeish, I., & Gallagher, I. J. The Emerging Role of Interleukin 1β (IL-1β) in Cancer Cachexia. Inflammation 2021 (pp. 1–6). https://doi.org/10.1007/s10753-021-01429-8
Laviano A, Inui A, Marks DL, Meguid MM, Pichard C, Fanelli FR, Seelaender M. Neural control of the anorexia-cachexia syndrome. American Journal of Physiology - Endocrinology and Metabolism. 2008;295(5):E1000-8. https://doi.org/10.1152/ajpendo.90252.2008.
Article
CAS
PubMed
Google Scholar
Lengyel E, Makowski L, DiGiovanni J, Kolonin MG. Cancer as a Matter of Fat: The Crosstalk between Adipose Tissue and Tumors. Trends in Cancer. 2018;4(5):374–84. https://doi.org/10.1016/j.trecan.2018.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YY, Chen D, Watkins SC, Feldman AM. Mitochondrial abnormalities in tumor necrosis factor-α-induced heart failure are associated with impaired DNA repair activity. Circulation. 2001;104(20):2492–7. https://doi.org/10.1161/hc4501.098944.
Article
CAS
PubMed
Google Scholar
Liu, Y., Lin, D., Wang, H., Zhang, H., Deng, T., Liu, R., Ning, T., Bai, M., Ying, G., & Ba, Y. Exosomes from Gastric Cancer Suppressed Adipo-differentiation of Adipose Mesenchymal Stem Cells to Promote Cancer-associated Cachexia via miR-155/ C/EPBβ pathway. Reasearch square 2020 https://doi.org/10.21203/rs.3.rs-42455/v1
Liu S, Wu HJ, Zhang ZQ, Chen Q, Liu B, Wu JP, Zhu L. L-carnitine ameliorates cancer cachexia in mice by regulating the expression and activity of carnitine palmityl transferase. Cancer Biol Ther. 2011;12(2):125–30. https://doi.org/10.4161/cbt.12.2.15717.
Article
CAS
PubMed
Google Scholar
Manne NDPK, Lima M, Enos RT, Wehner P, Carson JA, Blough E. Altered cardiac muscle mTOR regulation during the progression of cancer cachexia in the ApcMin/+ mouse. Int J Oncol. 2013;42(6):2134–40. https://doi.org/10.3892/ijo.2013.1893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchildon F, Fu D, Lala-Tabbert N, Wiper-Bergeron N. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death and Disease. 2016;7(2):e2109. https://doi.org/10.1038/cddis.2016.4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martignoni ME, Kunze P, Hildebrandt W, Künzli B, Berberat P, Giese T, Klöters O, Hammer J, Büchler MW, Giese NA, Friess H. Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia. Clin Cancer Res. 2005;11(16):5802–8. https://doi.org/10.1158/1078-0432.CCR-05-0185.
Article
CAS
PubMed
Google Scholar
Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. Journal of Cachexia, Sarcopenia and Muscle. 2021;12(2):252–73. https://doi.org/10.1002/jcsm.12678.
Article
PubMed
PubMed Central
Google Scholar
Matthys P, Dukmans R, Proost P, Van Damme J, Heremans H, Sobis H, Billiau A. Severe cachexia in mice inoculated with interferon-γ-producing tumor cells. Int J Cancer. 1991;49(1):77–82. https://doi.org/10.1002/ijc.2910490115.
Article
CAS
PubMed
Google Scholar
Mauffrey P, Tchitchek N, Barroca V, Bemelmans A, Firlej V, Allory Y, Roméo PH, Magnon C. Progenitors from the central nervous system drive neurogenesis in cancer. Nature. 2019;569(7758):672–8. https://doi.org/10.1038/s41586-019-1219-y.
Article
CAS
PubMed
Google Scholar
Miao C, Zhang W, Feng L, Gu X, Shen Q, Lu S, Fan M, Li Y, Guo X, Ma Y, Liu X, Wang H, Zhang X. Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia. Molecular Therapy - Nucleic Acids. 2021;24:923–38. https://doi.org/10.1016/j.omtn.2021.04.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller, Mj., Laird, B. J. A., & Skipworth, R. J. E. The immunological regulation of cancer cachexia and its therapeutic implications. Journal of Cancer Metastasis and Treatment, 2019. https://doi.org/10.20517/2394-4722.2019.001
Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002;8(9):955–62. https://doi.org/10.1038/nm749.
Article
CAS
PubMed
Google Scholar
Monroy-Cisneros K, Esparza-Romero J, Valencia ME, Guevara-Torres AG, Méndez-Estrada RO, Anduro-Corona I, Astiazarán-García H. Antineoplastic treatment effect on bone mineral density in Mexican breast cancer patients. BMC Cancer. 2016;16(1):1–7. https://doi.org/10.1186/s12885-016-2905-x.
Article
CAS
Google Scholar
Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalían SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, De Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9. https://doi.org/10.1126/science.1129003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mourikis P, Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev Biol. 2014;14(1):2. https://doi.org/10.1186/1471-213X-14-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mu X, Agarwal R, March D, Rothenberg A, Voigt C, Tebbets J, Huard J, Weiss K. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma. Sarcoma. 2016. https://doi.org/10.1155/2016/3758162.
Article
PubMed
PubMed Central
Google Scholar
Narsale AA, Carson JA. Role of interleukin-6 in cachexia: Therapeutic Implications. Current Opinion in Supportive and Palliative Care. 2014;8(4):321–7. https://doi.org/10.1097/SPC.0000000000000091.
Article
PubMed
PubMed Central
Google Scholar
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. https://doi.org/10.1038/nm.2492.
Article
CAS
PubMed
PubMed Central
Google Scholar
JK Onesti DC Guttridge 2014 Inflammation based regulation of cancer cachexia Biomed Res Int https://doi.org/10.1155/2014/168407
Op den Kamp CM, Gosker HR, Lagarde S, Tan DY, Snepvangers FJ, Dingemans AMC, Langen RCJ, Schols AMWJ. Preserved muscle oxidative metabolic phenotype in newly diagnosed non-small cell lung cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle. 2015;6(2):164–73. https://doi.org/10.1002/jcsm.12007.
Article
PubMed
PubMed Central
Google Scholar
Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: A review. Molecular and Cellular Endocrinology. 2011;344(1–2):1–24. https://doi.org/10.1016/j.mce.2011.07.002.
Article
CAS
PubMed
Google Scholar
Parajuli P, Kumar S, Loumaye A, Singh P, Eragamreddy S, Nguyen TL, Ozkan S, Razzaque MS, Prunier C, Thissen JP, Atfi A. Twist1 Activation in Muscle Progenitor Cells Causes Muscle Loss Akin to Cancer Cachexia. Dev Cell. 2018;45(6):712-725.e6. https://doi.org/10.1016/j.devcel.2018.05.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel HJ, Patel BM. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sciences. 2017;170:56–63. https://doi.org/10.1016/j.lfs.2016.11.033.
Article
CAS
PubMed
Google Scholar
Peixoto da Silva S, Santos JMO, Costa e Silva MP, Gil da Costa RM, Medeiros R. Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. Journal of Cachexia, Sarcopenia and Muscle. 2020;11(3):619–35. https://doi.org/10.1002/jcsm.12528.
Article
PubMed
PubMed Central
Google Scholar
Penna F, Ballarò R, Beltrà M, De Lucia S, Castillo LG, Costelli P. The skeletal muscle as an active player against cancer cachexia. Frontiers in Physiology. 2019;10(FEB):41. https://doi.org/10.3389/fphys.2019.00041.
Article
PubMed
PubMed Central
Google Scholar
Penna F, Ballarò R, Costelli P. The Redox Balance: A Target for Interventions against Muscle Wasting in Cancer Cachexia? Antioxidants and Redox Signaling. 2020;33(8):542–58. https://doi.org/10.1089/ars.2020.8041.
Article
CAS
PubMed
Google Scholar
Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P. Muscle wasting and impaired Myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS ONE. 2010;5(10):e13604. https://doi.org/10.1371/journal.pone.0013604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P. Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol. 2013;182(4):1367–78. https://doi.org/10.1016/j.ajpath.2012.12.023.
Article
CAS
PubMed
Google Scholar
Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner EF. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014;20(3):433–47. https://doi.org/10.1016/j.cmet.2014.06.011.
Article
CAS
PubMed
Google Scholar
Petruzzelli M, Wagner EF. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes and Development. 2016;30(5):489–501. https://doi.org/10.1101/gad.276733.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pigna E, Berardi E, Aulino P, Rizzuto E, Zampieri S, Carraro U, Kern H, Merigliano S, Gruppo M, Mericskay M, Li Z, Rocchi M, Barone R, Macaluso F, Di Felice V, Adamo S, Coletti D, Moresi V. Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer. Scientific Reports. 2016;6:1–4. https://doi.org/10.1038/srep26991.
Article
CAS
Google Scholar
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. https://doi.org/10.1126/science.284.5411.143.
Article
CAS
PubMed
Google Scholar
Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 2016;5(2):e200. https://doi.org/10.1038/oncsis.2016.3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pötgens SA, Brossel H, Sboarina M, Catry E, Cani PD, Neyrinck AM, Delzenne NM, Bindels LB. Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. Sci Rep. 2018;8(1):12321. https://doi.org/10.1038/s41598-018-30569-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pötgens SA, Thibaut MM, Joudiou N, et al. Multi-compartment metabolomics and metagenomics reveal major hepatic and intestinal disturbances in cancer cachectic mice. J Cachexia Sarcopenia Muscle. 2021;12(2):456–75. https://doi.org/10.1002/jcsm.12684.
Prins RM, Graf MR, Merchant RE. Cytotoxic T cells infiltrating a glioma express an aberrant phenotype that is associated with decreased function and apoptosis. Cancer Immunol Immunother. 2001;50(6):285–92. https://doi.org/10.1007/s002620100202.
Article
CAS
PubMed
Google Scholar
Puppa MJ, White JP, Sato S, Cairns M, Baynes JW, Carson JA. Gut barrier dysfunction in the Apc Min/+ mouse model of colon cancer cachexia. Biochimica Et Biophysica Acta - Molecular Basis of Disease. 2011;1812(12):1601–6. https://doi.org/10.1016/j.bbadis.2011.08.010.
Article
CAS
Google Scholar
Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G. Immunity to cancer: Attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev. 2002;188:97–113. https://doi.org/10.1034/j.1600-065X.2002.18809.x.
Article
CAS
PubMed
Google Scholar
Rohm M, Zeigerer A, Machado J, Herzig S. Energy metabolism in cachexia. EMBO Reports. 2019;20(4):e47258. https://doi.org/10.15252/embr.201847258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosa-Caldwell ME, Brown JL, Lee DE, Wiggs MP, Perry RA, Haynie WS, Caldwell AR, Washington TA, Lo WJ, Greene NP. Hepatic alterations during the development and progression of cancer cachexia. Appl Physiol Nutr Metab. 2020;45(5):500–12. https://doi.org/10.1139/apnm-2019-0407.
Article
CAS
PubMed
Google Scholar
Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, Giorgadze N, Tchkonia T, Kirkland JL, Chari ST, Mukhopadhyay D. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut. 2016;65(7):1165–74. https://doi.org/10.1136/gutjnl-2014-308350.
Article
CAS
PubMed
Google Scholar
Saito S, Aikawa R, Shiojima I, Nagai R, Yazaki Y, Komuro I. Endothelin-1 induces expression of fetal genes through the interleukin-6 family of cytokines in cardiac myocytes. FEBS Lett. 1999;456(1):103–7. https://doi.org/10.1016/S0014-5793(99)00936-9.
Article
CAS
PubMed
Google Scholar
Sartori R, Gregorevic P, Sandri M. TGFβ and BMP signaling in skeletal muscle: Potential significance for muscle-related disease. Trends in Endocrinology and Metabolism. 2014;25(9):464–71. https://doi.org/10.1016/j.tem.2014.06.002.
Article
CAS
PubMed
Google Scholar
Sethi N, Kang Y. Notch signalling in cancer progression and bone metastasis. British Journal of Cancer. 2011;105(12):1805–10. https://doi.org/10.1038/bjc.2011.497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shitara K, Matsuo K, Oze I, Mizota A, Kondo C, Nomura M, Yokota T, Takahari D, Ura T, Muro K. Meta-analysis of neutropenia or leukopenia as a prognostic factor in patients with malignant disease undergoing chemotherapy. Cancer Chemother Pharmacol. 2011;68(2):301–7. https://doi.org/10.1007/s00280-010-1487-6.
Article
CAS
PubMed
Google Scholar
Siddiqui JA, Pothuraju R, Jain M, Batra SK, Nasser MW. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochimica et Biophysica Acta - Reviews on Cancer. 2020;1873(2):188359. https://doi.org/10.1016/j.bbcan.2020.188359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva VRR, Micheletti TO, Pimentel GD, Katashima CK, Lenhare L, Morari J, Mendes MCS, Razolli DS, Rocha GZ, De Souza CT, Ryu D, Prada PO, Velloso LA, Carvalheira JBC, Rodrigo Pauli J, Cintra DE, Ropelle ER. Hypothalamic S1P/S1PR1 axis controls energy homeostasis. Nature Communications. 2014;5:1–5. https://doi.org/10.1038/ncomms5859.
Article
CAS
Google Scholar
Sin TK, Zhang G, Zhang Z, Gao S, Li M, Li YP. Cancer takes a toll on skeletal muscle by releasing heat shock proteins—an emerging mechanism of cancer-induced cachexia. Cancers. 2019;11(9):1272. https://doi.org/10.3390/cancers11091272.
Article
CAS
PubMed Central
Google Scholar
Talbert EE, Cuitiño MC, Ladner KJ, Rajasekerea PV, Siebert M, Shakya R, Leone GW, Ostrowski MC, Paleo B, Weisleder N, Reiser PJ, Webb A, Timmers CD, Eiferman DS, Evans DC, Dillhoff ME, Schmidt CR, Guttridge DC. Modeling Human Cancer-induced Cachexia. Cell Rep. 2019;28(6):1612-1622.e4. https://doi.org/10.1016/j.celrep.2019.07.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdisciplinary Reviews: Developmental Biology. 2016;5(4):518–34. https://doi.org/10.1002/wdev.230.
Article
CAS
PubMed
Google Scholar
Tang QQ, Lane MD. Adipogenesis: From stem cell to adipocyte. Annu Rev Biochem. 2012;81:715–36. https://doi.org/10.1146/annurev-biochem-052110-115718.
Article
CAS
PubMed
Google Scholar
Tardif N, Klaude M, Lundell L, Thorell A, Rooyackers O. Autophagic-Lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients1-3. Am J Clin Nutr. 2013;98(6):1485–92. https://doi.org/10.3945/ajcn.113.063859.
Article
CAS
PubMed
Google Scholar
Taskin S, Stumpf VI, Bachmann J, Weber C, Martignoni ME, Friedrich O. Motor protein function in skeletal abdominal muscle of cachectic cancer patients. J Cell Mol Med. 2014;18(1):69–79. https://doi.org/10.1111/jcmm.12165.
Article
CAS
PubMed
Google Scholar
Tayek JA. A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. J Am Coll Nutr. 1992;11(4):445–56. https://doi.org/10.1080/07315724.1992.10718249.
Article
CAS
PubMed
Google Scholar
Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. American Journal of Physiology - Cell Physiology. 2009;296(6):C1258-70. https://doi.org/10.1152/ajpcell.00105.2009.
Article
CAS
PubMed
Google Scholar
Tuca A, Jimenez-Fonseca P, Gascón P. Clinical evaluation and optimal management of cancer cachexia. Critical Reviews in Oncology/Hematology. 2013;88(3):625–36. https://doi.org/10.1016/j.critrevonc.2013.07.015.
Article
PubMed
Google Scholar
Van Norren K, Dwarkasing JT, Witkamp RF. The role of hypothalamic inflammation, the hypothalamic-pituitary-Adrenal axis and serotonin in the cancer anorexia-cachexia syndrome. Current Opinion in Clinical Nutrition and Metabolic Care. 2017;20(5):396–401. https://doi.org/10.1097/MCO.0000000000000401.
Article
CAS
PubMed
Google Scholar
VanderVeen BN, Murphy EA, Carson JA. The Impact of Immune Cells on the Skeletal Muscle Microenvironment During Cancer Cachexia. Front Physiol. 2020;11:1037. https://doi.org/10.3389/fphys.2020.01037.
Article
PubMed
PubMed Central
Google Scholar
Verschueren S, Gielen E, O’Neill TW, Pye SR, Adams JE, Ward KA, Wu FC, Szulc P, Laurent M, Claessens F, Vanderschueren D, Boonen S. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int. 2013;24(1):87–98. https://doi.org/10.1007/s00198-012-2057-z.
Article
CAS
PubMed
Google Scholar
Wang Z, Zhao C, Moya R, Davies JD. A Novel Role for CD4 + T Cells in the Control of Cachexia. J Immunol. 2008;181(7):4676–84. https://doi.org/10.4049/jimmunol.181.7.4676.
Article
CAS
PubMed
Google Scholar
Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, Chiechi A, Wright LE, Umanskaya A, Niewolna M, Trivedi T, Charkhzarrin S, Khatiwada P, Wronska A, Haynes A, Benassi MS, Witzmann FA, Zhen G, Wang X, Guise TA. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21(11):1262–71. https://doi.org/10.1038/nm.3961.
Article
CAS
PubMed
PubMed Central
Google Scholar
White JP, Baltgalvis KA, Puppa MJ, Sato S, Baynes JW, Carson JA. Muscle oxidative capacity during IL-6-dependent cancer cachexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology. 2011;300(2):R201-11. https://doi.org/10.1152/ajpregu.00300.2010.
Article
CAS
Google Scholar
Wildi S, Kleeff J, Maruyama H, Maurer CA, Büchler MW, Korc M. Overexpression of activin A in stage IV colorectal cancer. Gut. 2001;49(3):409–17. https://doi.org/10.1136/gut.49.3.409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wisse BE, Frayo RS, Schwartz MW, Cummings DE. Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology. 2001;142(8):3292–301. https://doi.org/10.1210/endo.142.8.8324.
Article
CAS
PubMed
Google Scholar
Yang R, Han X, Uchiyama T, Watkins SK, Yaguchi A, Delude RL, Fink MP. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2003;285(3):48–3. https://doi.org/10.1152/ajpgi.00177.2003.
Article
Google Scholar
Yu J. Intestinal stem cell injury and protection during cancer therapy. Translational Cancer Research. 2013;2(5):384–96. https://doi.org/10.3978/j.issn.2218-676X.2013.07.03.
Article
CAS
PubMed
Google Scholar
Yu J, Choi S, Park A, Do J, Nam D, Kim Y, Noh J, Lee KY, Maeng CH, Park KS. Bone marrow homeostasis is impaired via jak/stat and glucocorticoid signaling in cancer cachexia model. Cancers. 2021;13(5):1–18. https://doi.org/10.3390/cancers13051059.
Article
CAS
Google Scholar
Zentella A, Manogue K, Cerami A. Cachectin/TNF-mediated lactate production in cultured myocytes is linked to activation of a futile substrate cycle. Cytokine. 1993;5(5):436–47. https://doi.org/10.1016/1043-4666(93)90033-2.
Article
CAS
PubMed
Google Scholar
Zhang D, Song B, Wang S, Zheng H, Wang X. Association of interleukin-8 with cachexia from patients with low-third gastric cancer. Comp Funct Genomics. 2009. https://doi.org/10.1155/2009/212345.
Article
PubMed
PubMed Central
Google Scholar
Zhang G, Liu Z, Ding H, Zhou Y, Doan HA, Sin KWT, Zhu ZJ, Flores R, Wen Y, Gong X, Liu Q, Li YP. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nature Communications. 2017;8(1):1–6. https://doi.org/10.1038/s41467-017-00726-x.
Article
CAS
Google Scholar
Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, Yang H, Sun W, Wang X, Zhu K, Fan Q, Li J, Ying G, Ba Y. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer. 2019;144(10):2501–15. https://doi.org/10.1002/ijc.31977.
Article
CAS
PubMed
Google Scholar
Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, Lacey DL, Goldberg AL, Han HQ. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–43. https://doi.org/10.1016/j.cell.2010.07.011.
Article
CAS
PubMed
Google Scholar
Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296(5572):1486–8. https://doi.org/10.1126/science.1069525.
Article
CAS
PubMed
Google Scholar