Skip to main content

Mesenchymal stem cell as a novel approach to systemic sclerosis; current status and future perspectives

Abstract

Systemic sclerosis is a rare chronic autoimmune disease with extensive microvascular injury, damage of endothelial cells, activation of immune responses, and progression of tissue fibrosis in the skin and various internal organs. According to epidemiological data, women’s populations are more susceptible to systemic sclerosis than men. Until now, various therapeutic options are employed to manage the symptoms of the disease. Since stem cell-based treatments have developed as a novel approach to rescue from several autoimmune diseases, it seems that stem cells, especially mesenchymal stem cells as a powerful regenerative tool can also be advantageous for systemic sclerosis treatment via their remarkable properties including immunomodulatory and anti-fibrotic effects. Accordingly, we discuss the contemporary status and future perspectives of mesenchymal stem cell transplantation for systemic sclerosis.

Background

Systemic sclerosis (SSc) or scleroderma as a rare heterogeneous and chronic autoimmune disease (characterized by extensive microvascular injury, damage of endothelial cells (ECs), activation of immune responses, and progression of tissue fibrosis) can affect the skin and various internal organs including the heart, lungs, kidneys, and gastrointestinal tract (Sobolewski et al. 2019a; Asano 2018; Sticherling 2012; Pattanaik et al. 2015). Of course, cutaneous manifestations (skin thickening and sclerotic skin lesions) are among the main and primary hallmarks of SSc (Krieg and Takehara 2009; Krieg and Takehara 2006). Generally, age, gender, and race as pivotal factors can determine SSc susceptibility. In this respect, females are more susceptible to SSc than males and the most prevalent age of involvement is 30–50 years (Mayes 2003; Nikpour et al. 2010). The subtype of the SSc, the disease stage, and the type of involved organs are crucial elements to determine the best approach for treatment, as well as the most appropriate course of treatment (Sobolewski et al. 2019b; Bissell et al. 2017). Herein, various therapeutic options are offered to control and manage the SSc symptoms. Collectively, mentioned therapeutic options include chemical drugs (prescribed based on the affected organs such as steroid drugs, immune system regulators, and gastrointestinal medications), moisturizers (herbal and/or chemical), phototherapy (especially the use of UVA-1 light to treat skin thickening and lesions), exercise, physical therapy, and occupational therapy (Adnan 2008; Sapadin and Fleischmajer 2002). Moreover, in recent decades, several cell-based therapies and regenerative medicine approaches (as promising and novel alternative options) have studied for SSc and many other chronic diseases (Song et al. 2017; Zakrzewski et al. 2019; Goodarzi et al. 2015; Goodarzi et al. 2014; Payab et al. 2018; Soleimani et al. 2016). In other words, stem cell transplantation has developed as a new way to salvation from different life-threatening autoimmune diseases. Indeed, cell therapy can be effective by preventing the abnormal functioning of self-activated immune cells with the help of safe and effective immune tolerance formed by transplanted cells (Rosa et al. 2007; Resnick et al. 2017; Del Papa et al. 2018; Dazzi et al. 2007; Radbruch and Thiel 2004). Among the various cells, mesenchymal stem cells (MSCs) (obtained from diverse tissues) are mostly known as perfect agents to the regenerative objects to represent cell multi-potency along with anti-inflammatory and powerful regenerating qualities (Larijani et al. 2015; Han et al. 2019; Pittenger et al. 2019; Goodarzi et al. 2018a; Goodarzi et al. 2019a). Furthermore, a broad range of in vitro and in vivo preclinical investigations have shown that autologous and allogeneic MSCs can be employed in a variety of immune-mediated statuses (Zhao et al. 2016; Figueroa et al. 2012). Hence, in the current review, we discuss the contemporary status and future perspectives of MSCs - based therapeutic approaches for systemic sclerosis as an immune-mediated condition.

A review of scleroderma symptoms and pathophysiology

SSc is an autoimmune disease with a prevalence of 100 to 300 per million depending on the country. Furthermore, it is a disabling disease that affects the quality of life (Maria et al. 2016a; Rozier et al. 2018) by causing symptoms like loss of hand function, pain, and psychological problems. It also reduces life expectancy by causing death from SSc-related complications and raising the incidence of malignancy and cardiovascular problems (Rozier et al. 2018; Elhai et al. 2017; Poudel et al. 2018; Zeineddine et al. 2016). In rapidly progressive forms of the disease, the five-year mortality rate can reach 30–50% depending on the extent of skin, cardiopulmonary, and renal involvement (van Laar and Sullivan 2013; Velier et al. 2019). Vasculopathy)which can make one of the earliest symptoms of the disease(, Raynaud’s Phenomenon (happen as well as digital ulcers), pulmonary arterial hypertension, and telangiectasia (Rozier et al. 2018; Velier et al. 2019; Desbois and Cacoub 2016) are associated with SSc. The main characteristic of the disease is the collagen accumulation in the skin and internal organs, especially the lungs, but the involvement of the heart and digestive system is also reported (Maria et al. 2016a; Rozier et al. 2018; Velier et al. 2019; Chighizola et al. 2011; Okamura et al. 2020). As mentioned, there are three main axes which cause the symptoms: autoimmunity, vascular abnormality, and fibrosis (Asano 2018; Maria et al. 2016a; Rozier et al. 2018; Okamura et al. 2020). Additionally, it has been demonstrated that the environment is involved in the pathophysiology of the disease (i.e., oxidative stress) (Rozier et al. 2018). Different types of antibodies are detected in more than 90% of the patients, including anti-DNA topoisomerase I, anti-RNA polymerase, and anticentromere antibodies (Okamura et al. 2020). These antibodies can cause immune system dysregulation and inflammation. This evidence is supported by the elevated levels of advanced oxidation protein products (AOPPs) in sera and decreased total antioxidant capacity in hypochlorous acid (HOCl)-Induced mouse model of SSc which are a reflection of the inflammation level in the body (Maria et al. 2016a). Collagen retention and following tissue fibrosis can be considered as a key feature of SSc. Therein, fibrosis can form in the skin, lung, or other internal organs. Skin fibrosis can cause symptoms like cutaneous wounds (Sobolewski et al. 2019a; Rubio et al. 2018), degeneration of skin appendages such as hair follicles, sweat glands and cutaneous blood vessels (Wei et al. 2011), microstomia, xerostomia (Sobolewski et al. 2019a). Moreover, perivascular inflammatory cell infiltrates (T lymphocytes and monocytes) as well as increased numbers of alpha-smooth muscle actin (α-SMA)-positive myofibroblasts lead to skin atrophy (Sobolewski et al. 2019a; Wei et al. 2011). On the other hand, the main histological lesion of SSc in the lung is nonspecific interstitial pneumonitis (NSIP) that is a result of interstitial inflammation (in the form of patchy infiltration of the alveolar walls with lymphocytes, plasma cells, macrophages and eosinophils into the alveolar walls and a T helper 2 (Th2) positive bronchoalveolar lavage (BAL)test) along with fibrosis spreading (Wei et al. 2011). Another worse prognosis lesion is usual interstitial pneumonia (UIP) that is characterized by patchy fibrosis (Wei et al. 2011). Air space obliteration and honeycombing can be presented as a result of progressive thickening of the alveolar septa (Wei et al. 2011). Among other internal organs, the esophagus is almost always implicated (Sobolewski et al. 2019a; Wei et al. 2011). Concerning renal implications, vascular lesions are common in contrast to glomerulonephritis (Wei et al. 2011). Interstitial and perivascular fibrosis in cardiac tissue may be silent (Sobolewski et al. 2019a) or presented with diastolic dysfunction (Wei et al. 2011). Among several pro-fibrotic microRNAs (miRs), studies have shown that miR-199-3p is increased in the lung, kidney and liver and induces fibrosis as one of the major symptoms of SSc (Rubio et al. 2018; Cardenas et al. 2013). Indeed, miRs are major regulators of gene expression, the same process exists in pro-fibrotic pathways (Rubio et al. 2018; Bowen et al. 2013). Moreover, it is reported that miR-199-3p impairs cutaneous wound healing responses (Rubio et al. 2018; Chan et al. 2012). Caveolin-1 (CAV-1) is the confirmed target of miR-199-3p and plays an important role in sequestering growth factor receptors and blocking their signaling from the plasma membrane (Rubio et al. 2018; Cardenas et al. 2013). Studies have reported that the CAV-1 level is reduced in fibrotic skin and lung diseases (Rubio et al. 2018; Castello-Cros et al. 2011). On the other hand, the phosphorylation of protein kinase B (PKB) or Akt (involved in cell metabolism, growth, proliferation, and survival) is increased during the fibrogenesis process of SSc (Rubio et al. 2018; Mercer et al. 2016; Zhang et al. 2016). Further, PKB is the other impaired pathway in the pathophysiology of scleroderma that is involved in increased levels of cell apoptosis. Increased level of apoptosis markers (such as caspase-9) reflects this evidence (Tashiro et al. 2015). Altogether, the main pathophysiology of the disease can be summarized in Fig. 1 (Velier et al. 2019).There are two main types of systemic sclerosis based on the extent of collagen deposition: diffuse form and the limited one. There is an extensive amount of fibrosis in the diffuse form of the disease, whereas in the limited form, some local points of fibrosis are detected (Rozier et al. 2018; Okamura et al. 2020; LeROY and Medsger Jr 2001). Generally, the pathophysiology of scleroderma types has not been completely understood to the date (Velier et al. 2019; Okamura et al. 2020). However, it has been believed that immune cells and their secretions play an important role in developing the disease (Okamura et al. 2020). In this context, Th2 cytokines, including interleukin (IL)-4, IL-6, and IL-13 are elevated in the patient’s serum which promote fibrosis (Okamura et al. 2020; Hasegawa et al. 1998). In addition, IL-6 (from B cells) is involved in the disease pathogenesis (Okamura et al. 2020; Le Huu et al. 2012; Matsushita et al. 2018). Collectively, current therapeutic methods for SSc are symptomatic treatments which can’t prevent the disease progression as well as curing the fibrosis lesions (Velier et al. 2019). Up to now, the only treatment that can have profits in the severe form of the disease is autologous hematopoietic stem cell transplantation. However, it can be accompanied by high toxicity, as a side effect (Velier et al. 2019; van Laar et al. 2014; Burt and Farge 2018; Sullivan et al. 2018). Hence, providing an appropriate and novel treatment for SSc seems to be necessary (Rozier et al. 2018; Uji et al. 2015).

Fig. 1
figure1

Pathophysiology of Systemic Sclerosis (SSc). In the pathophysiology of SSc first of all, an immune dysregulation is caused that is displayed by auto antibody production. The mechanism during which the dyscrasias is caused, is not completely understood, but it is proposed that genetics and the environmental factors play important roles in the process. Autoantibodies as well as other factors like high levels of reactive oxygen species(ROS) cause vascular injury, the process that leads to the activation of fibroblasts. Activated fibroblasts produce an unusual high amount of collagen (especially type I) as well as other components of extracellular matrix (ECM) that form an extensive amount of fibrosis (Velier et al. 2019)

The effects of scleroderma on the properties of patient’s mesenchymal stem cells

Until now, several types of research have been conducted around comparing the MSCs derived from healthy individuals to MSCs from SSc subjects (SSc-MSCs) for assessing the effects of scleroderma on the patient’s MSCs. Although some of them have differed in parts of the outcomes, the majority has indicated the following results:

  • In all of the SSc-MSC types, there isn’t a significant difference in phenotype and expression of MSCs specific markers compared to healthy ones (Rozier et al. 2018; Larghero et al. 2008; Scuderi et al. 2013).

  • All of the SSc-MSC types are maintained the normal MSCs multi- differentiation ability (Rozier et al. 2018).

  • All of the SSc-MSC types are maintained the normal MSCs immune modulator and immune suppressive capability (Rozier et al. 2018; Cipriani et al. 2013a).

  • All of the SSc-MSC types are maintained the normal MSCs colony forming unit’s capacity (Rozier et al. 2018).

  • All of the SSc-MSC types indicate the increases myofibroblastic differentiation (as a hallmark of scleroderma pathogenesis) strength compared to healthy ones (Guiducci et al. 2011).

  • All of the SSc-MSC types are shown the excess levels of type II transforming growth factor beta (TGFβ) receptor (TGFβR II) and following that, promoting the TGFβ signaling pathway and increasing the production of type I collagen target genes compared to healthy ones (Guiducci et al. 2011).

  • In SSc- BM- MSCs there is an increasing level of senescence markers compared to healthy ones (Rozier et al. 2018; Guiducci et al. 2011).

  • SSc- BM- MSCs can produce more specific markers related to pericytes (as cells that have myofibroblast trans-differentiation tendency) than healthy ones (Cipriani et al. 2013b; Cipriani et al. 2014).

  • SSc- AD- MSCs are indicated the reduction of proliferative rate as well as decreases the metabolic, migration and invasion activities compared to healthy ones (Cipriani et al. 2013a; Griffin et al. 2017).

General characters of mesenchymal stem cells and source of extraction

MSCs are multipotent progenitor cells, which can be extracted from different tissues, including bone marrow (BM), adipose tissue (AD), umbilical cord (UC), placenta (PL), and dental pulp (Maria et al. 2016a; Rozier et al. 2018; Velier et al. 2019; Uji et al. 2015; da Silva et al. 2006). They are known by 3 main characteristics: (1) Plastic adherence, (2) expression of the cell surface markers CD73, CD90, CD105, and lack of expression of the hematopoietic markers CD11b or CD14, CD19 or CD79α, CD34, CD45, human leukocyte antigen-DR (HLA-DR), and (3) capacity of differentiating into adipocytes, chondrocytes, and osteoblasts (Maria et al. 2016a; Rozier et al. 2018; Dominici et al. 2006); moreover, they have functions like supporting hematopoietic stem cells differentiation, cell proliferation as well as anti-fibrotic, antiapoptotic, proangiogenic, anti-bacterial, and anti-inflammatory effects (against the mitogen-induced proliferation of T lymphocytes) (Maria et al. 2016a; Rozier et al. 2018; Maumus et al. 2013). These actions are mostly paracrine which means that MSCs secrete effectors in the extracellular space (Rozier et al. 2018; Velier et al. 2019; Maumus et al. 2013; Abbasi-Malati et al. 2018). However, these effects can happen via cell-cell contact (Rozier et al. 2018; Luz-Crawford et al. 2012). On the other hand, MSCs have been proposed to have pericyte like properties (Rozier et al. 2018). Pericytes are microcirculation cells that their cross-talk with EC, regulates angiogenesis (Rozier et al. 2018). Studies have shown that pericytes have multi-lineage differentiation capacities in vitro and they don’t have this property in vivo (Rozier et al. 2018; Guimarães-Camboa et al. 2017). Hence, it has been concluded that part of MSCs (BM-MSCs) are pericytes acting as multipotent progenitors and express pericyte specific markers, including a-SMA, neuron-glial antigen 2(NG2), regulator of G protein signaling 5 (RGS5), desmin, and platelet-derived growth factor receptors (PDGFb-R) (Rozier et al. 2018; Cipriani et al. 2013b; Cai et al. 2009). MSCs vary in differentiation potential or immunomodulatory capacity based on their source (Rozier et al. 2018; Kern et al. 2006; Keyser et al. 2007). They have pleiotropic activity, so their therapeutic function in different diseases has been evaluated such as rheumatic diseases (Rozier et al. 2018; Ruiz et al. 2016), stroke (Rozier et al. 2018; Toyoshima and Yasuhara 2017), lupus and scleroderma (Rozier et al. 2018; Cras et al. 2015), heart diseases (Rozier et al. 2018; Yu et al. 2017), or bone defects (Rozier et al. 2018; Paduano et al. 2017). In addition, their safety has been proved by hundreds of clinical trials (Rozier et al. 2018; Lalu et al. 2012). In fact, the efficacy of using MSCs in SSc treatment is being assessed by several phase I/II clinical trials (Rozier et al. 2018) of which there is a review in the following parts.

Mechanism of mesenchymal stem cells in counteracting scleroderma symptoms

MSCs are proposed to play important roles in several diseases via different mechanisms of action. Hereupon, various mediators are secreted through the each of these mechanisms (Rozier et al. 2018; Maumus et al. 2013). In this respect, MSCs take part in SSC in 3 main axes (Fig. 2):

  • The anti-fibrotic property prevents collagen accumulation in the skin, lung and digestive system (Rozier et al. 2018; Velier et al. 2019). TGFβ1, TGFβR II, collagen type I alpha 1 chain (COL1A1), collagen type III alpha 1 chain (COL3A1), hepatocyte growth factor (HGF), matrix metalloproteinases (MMPs)1, MMP2, MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1), miR-1999-3p, miR-151-5p take part in this axis (Rozier et al. 2018; Rubio et al. 2018; Wang et al. 2016).

  • The angiogenic properties, go against widespread vasculopathy by using vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), HGF, platelet-derived growth factor (PDGF), and IL6 (Rozier et al. 2018; Velier et al. 2019).

  • The anti-inflammatory property counteracts the dysregulation of the immune system. TGFβ1, IL6, prostaglandin E2 (PGE2), HGF, interferon-gamma (IFN-γ), IL-10, IL4, tumour necrosis factor alpha (TNF-α), glucocorticoid-induced leucine zipper (GILZ), indolamine-2,3-dioxygenase (IDO) and inducible NO synthase (iNOS), TNF-α-stimulatedgene-6 (TSG6), interleukin-1 receptor antagonist (IL-1RA), heme oxygenase-1 (HO-1), and TNF receptor 1 (TNFR1) are associated with this mechanism (Rozier et al. 2018; Cras et al. 2015; Maria et al. 2017; Peltzer et al. 2018) (Fig. 2).

Fig. 2
figure2

Mesenchymal stem cells (MSCs) Mechanism of Action for Scleroderma Treatment. MSCs can play a role in scleroderma treatment via different mechanism such as an anti-fibrotic effect on collagen accumulation, proangiogenic effect against vasculopathy, and anti-inflammatory and immunomodulatory effects (Peltzer et al. 2018; Lim et al. 2017; Akiyama et al. 2012; Chen et al. 2017a; Maria et al. 2016b)

The attenuation of vasculopathy

As mentioned earlier, some of the MSCs have pericyte like properties and enhance vasculogenesis through crosstalks with ECs. Herein, in an experimental study, BM-MSCs (positive for α-SMA) were purified from α-SMA- green fluorescent protein(GFP) transgenic mice in order to study their proliferative and pro-angiogenic characteristics and the conclusion was that α-SMA-GFP positive cells can play a role in neovascularization through special cross-talks with ECs (Cai et al. 2009). When ischemia happens in an organ due to the structural vessel abnormalities during SSc, progenitor cells enter blood circulation from bone marrow or peripheral niches. They adhere to the injured sites and mature into the endothelial and vascular smooth muscle cells (Guiducci et al. 2008). Some of the BM-MSCs are proposed to have the characteristics of endothelial progenitor cells (Guiducci et al. 2008; Chopra et al. 2018). Some studies have shown that although BM-MSCs are negative for vascular endothelial growth factor receptor2(VEGFR2), von Willebrand factor (vWF), and vascular endothelial cadherin factors, growing under endothelial conditions, makes them to express those factors (Chopra et al. 2018; Jiang et al. 2002; Oswald et al. 2004; Reyes et al. 2002). Therefore, it is suggested that BM-MSCs can differentiate into ECs and promote collaterals forming through paracrine mechanisms (Chopra et al. 2018; Kinnaird et al. 2004). Oxidative stress is another mechanism contributing to vasculopathy in SSc. ECs exposure to radical oxygen species causes endothelial aging, morphological changes and impairment of cell–cell adhesion. MSCs can attenuate this process by counteracting the immune dysregulation that happens during the pathophysiology of the disease as well as enhancing antioxidant enzyme production (Guiducci et al. 2008).

The attenuation of immune dysregulation

Immune dysregulation is another underlying mechanism of the disease that is caused by increased levels of inflammation (reflected by the level of AOPPs in serum) and the reduction of total antioxidant capacity of the body (Maria et al. 2016a). Studies have shown that BM-MSC treatment in HOCL-induced mouse models significantly increases the mRNA expression of the antioxidant enzymes HO-1 and superoxide dismutase 2 (SOD2) in the lung and Sod2 in the skin. Altogether, these effects imply an enhancement in antioxidant capacity of serum in these mice (Maria et al. 2016a).

The attenuation of fibrosis

Fibrosis spreading in SSc happens during three main mechanisms. All these mechanisms and the effect of MSC treatment on their suppression are discussed in the following part.

  • Reducing the infiltration of immune cells into the skin and lung

Studies have shown that a polymorphic infiltration of immune cells (including CD3+ T cells and F4/80+ and CD11b + macrophages) as well as myofibroblasts (by α-SMA1 and TGFβ1) plays an important role in the skin and lung fibrosis in bleomycin and HOCl-induced models (Maria et al. 2016a; Okamura et al. 2020; Yoshizaki et al. 2010). However, PAX-51 B cell infiltration wasn’t observed in the organ sections (Maria et al. 2016a; Okamura et al. 2020). A study showed macrophages, neutrophils, and lymphocytes penetration in the lung tissue following intra-tracheal bleomycin injection (Lee et al. 2014). In these studies, AD-MSCs treatment significantly reduced the infiltration of CD4+ and CD8+ T cells, and CD11b + macrophages into the skin compared to the control group (phosphate-buffered saline (PBS)-treated group) (Okamura et al. 2020). The same effect was observed in BM-MSC treatment. More precisely, intra alveolar septa showed almost normal architecture and fewer parenchymal cell infiltration was observed in the lung and skin (Maria et al. 2016a).

  • Reducing mRNA expression of fibrogenic cytokines and collagen

Producing fibrogenic cytokines (including IL-1b, IL-6, IL-10, IL-13, and TNF-α) is another mechanism that results in the skin and lung fibrosis of SSc in animal models (Maria et al. 2016a; Okamura et al. 2020; Duncan and Berman 1989; Hasegawa et al. 2011; Horikawa et al. 2005; Matsushita et al. 2007; Matsushita et al. 2006). By contrast, IFN-γ (Th1 cytokine) is an antifibrotic cytokine (Okamura et al. 2020; Yamamoto et al. 2000). A study has shown that AD-MSCs treatment in bleomycin-induced mouse models reduces IL-6, IL-13, TNF-α and pro COL1A2 gene mRNA expression in the skin compared to the control group (Okamura et al. 2020). In addition, IFN-γ mRNA levels in the skin of AD-MSCs -treated group were comparable to the control group (Okamura et al. 2020). BM-MSC treatment also resulted in lower levels of IL-1b,IL-6, IL-10 as well as reduced expression levels of COL1, COL3, TGFβ1, and α-SMA genes in the skin and reduced levels of IL-1b, TNF-α, and IL-10 in the lung in HOCL-induced mouse models (Maria et al. 2016a). BM-MSC treatment also reduced expression of transcripts for tissue remodeling parameters, such as tissue inhibitor of metalloproteinases 1 (TIMP-1), HGF, VEGF, and MMP9 in the skin (Maria et al. 2016a). However, the levels of these parameters were a bit different in the lung tissue (Maria et al. 2016a). BM-MSC treatment affected the expression of tissue remodeling parameters in this way: MMp1/ TIMP-1 ratio was increased, along with the reduction of TGFβRII, HGF, MMP9, and VEGFA gene expression (Maria et al. 2016a).

  • Decreasing the frequency of cytokine-producing CD4+ T cells and effector B cells in the spleen in scleroderma models

Coming to the number of regulatory and cytokine-producing T cells, and effector/regulatory B cells in the spleen, a study has shown that AD-MSCs treatment reduces the number of TNF-α, IL-13 and IL-17-producing CD4+ T cells and IL-6-producing effector B cells in the spleen of bleomycin models. Besides, AD-MSCs can lower the level of IL-13 and IL-17 expression from CD4+ T cells. However, AD-MSCs doesn’t affect the number of T and B regulatory cells (Okamura et al. 2020).

Animal modeling for experimental studies of scleroderma

In order to be able to have an overall view of the preclinical data accessible about various diseases such as SSc, reviewing the main features of different types of animal models that are most commonly used in this field of study seems to be necessary (Larijani et al. 2019; Goodarzi et al. 2019b). Herein, current review also helps the researchers with the design of relevant animal studies via providing the pros and cons of each model in detail. The SSc preclinical models are divided in two main categories based on the process of the target phenotype developing: the genetic and inducible animal models.

The genetic animal models

According to studies, scleroderma genetics animal models fall into the following three general categories (Lakos et al. 2004; Artlett 2014; Jimenez and Christner 2002) (Table 1):

  1. 1.

    SSc models which have emerged through spontaneous mutations (lead to raised extracellular matrix deposition) to the genome. This type has demonstrated to be valuable for investigating fibrosis and vasculopathy. Nevertheless, since SSc is not hereditary in humans, the mutations existing in this type cannot be applied to humans.

  2. 2.

    Transgenic models of fibrosis, which are momentous to recognize the part of particular genes related to fibrosis.

  3. 3.

    Knockout models of fibrosis that analyze the specific participation of a gene in fibrosis.

Table 1 Scleroderma Genetics Models (Lakos et al. 2004; Jimenez and Christner 2002)

Inducible animal models

Several animal models are categorized as inducible ones (Asano and Sato 2013; Morin et al. 2015). Every model can mimic particular manifestations of the disease. To the date, mice and rats have been widely used as inducible animal models and are subdivided into several groups based on their target preclinical manifestations such as developing lung or skin fibrosis, mimicking inflammatory phases of the disease, pulmonary hypertension (Storkanova and Tomcik 2017) and presenting exact mechanisms induced by a particular factor. The HOCL-injected model is largely used in preclinical studies of scleroderma and exhibits systemic phenotype of human SSc through developing fibrosis, inflammation and vasculopathy as the main pathophysiological aspects of the disease (Asano and Sato 2013; Morin et al. 2015). A subgroup of models exclusively simulates the pattern of fibrosis extension in pulmonary tissue through fibroblast activation and increasing collagen gene expression (Storkanova and Tomcik 2017). Some models present skin fibrosis through the activation of micro-chimeric fetal cells (Storkanova and Tomcik 2017) and some simulate the inflammatory phases of SSc through immune cell infiltration (Morin et al. 2015; Storkanova and Tomcik 2017; Yamamoto 2010). Several models are designed for pulmonary hypertension studies and the others develop particular processes induced by related factors; for example, the role of anti-topoisomerase immunization, TGFβ, anti-endothelin I receptor type-A and anti-angiotensin II receptor type − 1 antibodies in developing the pathological phenotype can be studied in particular models (Storkanova and Tomcik 2017). Therein, several preclinical models and their different features in addition to advantages and disadvantages are provided in detail in Table 2.

Table 2 Preclinical Inducible Models in Studies of Systemic Sclerosis

Animal studies for mesenchymal stem cells - based treatments in scleroderma

In order to have a better overview on the effects of MSC treatment on SSc phenotype, preclinical data from animal studies with a publication date from 2016 till now is reviewed. Bleomycin-induced, HOCl-injected and Tsk1/+ models are three most commonly used animal models in this case. Moreover, among different types of mesenchymal stem cells, there has been a favored toward using BM-MSC in SSc animal experiments. Studies have shown that AD-MSC injection in SSc models counteracts fibrosis expansion in the lung and skin as well as levels of cytokines and gene products involved in fibrosis forming (Okamura et al. 2020; Rubio et al. 2018; Maria et al. 2016b). A better state of wound healing and lower levels of inflammation were also observed in the implicated sites (Rubio et al. 2018; Maria et al. 2016b). The same effects were reported from BM-MSC based experiments (Maria et al. 2016a; Maria et al. 2016b; Lan et al. 2017; Maria et al. 2018) as well as proposing the beneficial effect of HGF in causing BM-MSC to function more efficiently against fibrosis expansion (Cahill et al. 2016). In addition, some studies have reported the potential of thioredoxin 1 (Trx-1) overexpressing BM-MSC in lowering the apoptosis rate (Jiang et al. 2017). BM-MSC injection also decreases osteopenia and bone marrow substitution by adipose tissue in Tsk1/+ SSc models (Chen et al. 2017b). The inhibition of mammalian target of rapamycin (mTOR) pathway has been suggested as the underlying mechanism (Chen et al. 2017b). Beneficial effects of MSC-based therapeutic approaches on animal models of SSc have been provided in more detail in Table 3.

Table 3 Some of The MSC-based Animal Studies for Scleroderma

Clinical studies on mesenchymal stem cells-based treatments for scleroderma subjects

Clinical experiments of MSC-based treatments of SSc are provided in two categories of case reports and clinical trials. AD-MSC, UC-MSC, adipose tissue-derived stromal vascular fraction (ADSVF) and autologous fat are cells/tissues used in the studies we reviewed in order to counteract SSc symptoms. In some cases, regenerative materials have been utilized in combination with platelet-rich plasma (PRP). The reason for adding PRP is its nutritious plasma component that increases the survival of fat graft as well as improving the proliferation of pre-adipocytes through the secretion of particular types of growth factors and cytokines (Daumas et al. 2020). Studies have shown that fat tissue transplantation causes increased skin trophicity leading to better states of mouth opening and digital ulcer healing (Daumas et al. 2020; Del Papa et al. 2019; Onesti et al. 2016). An increased number of capillaries in affected sites were also reported in fat transplantation studies (Del Papa et al. 2019). The beneficial properties of fat tissue that make it suitable for cases affected by skin sclerosis are its biocompatibility, filling property and regenerative potential (due to its high content of multipotent stem or progenitor cells) (Rozier et al. 2018). AD-MSC injection has the same effect on mouth opening range as well as improving hand function and decreasing Raynaud’s sign when applied subcutaneously to all fingers (Onesti et al. 2016; Khanna et al. 2018). ADSVF-based treatments show similar outcomes in enhancing angiogenesis and wound healing causing better hand function and preventing amputation due to hand gangrene (Song et al. 2017; Daumas et al. 2017; Virzì et al. 2017). Other studies have discussed the therapeutic function of UC-MSC in elevating hand and lung function as well as reducing collagen content in the skin in SSc patients (Liang et al. 2018; Wehbe et al. 2016; Zhang et al. 2017). The clinical results and experimental conditions of clinical studies with a publication date of 2016 till now are provided in more detail in Table 4.

Table 4 Some of MSC-based Clinical Data For Scleroderma

The most suitable type of mesenchymal stem cells for using in clinical trials of scleroderma

As mentioned, several investigations have been established the advantageous impact of the autologous or allogeneic BM-MSCs and AD-MSCs in different SSc preclinical and clinical cases. Moreover, some of the studies were also evaluated the effects of UC-MSCs (Rozier et al. 2018; Cras et al. 2015). On the other hand, based on some reports, although whole MSCs revealed similar surface markers, various MSC populations from different tissues exhibited varied genetic profiles, and following that they can secrete different factors which can lead to various therapeutic features (Pittenger et al. 2019; Wegmeyer et al. 2013; Marquez-Curtis et al. 2015). In general, the most suitable type of MSC for therapeutic application is the one that can be easily isolated and extracted with less invasive methods. In addition, it can demonstrate its basilar capabilities in higher strength compared to its counterparts from other sources. Accordingly, in contrast to the BM and AD-MSCs, UC-MSCs can be achieved in larger numbers without an invasive method. Furthermore, they have a higher proliferation capacity than BM / AD-MSCs (El Omar et al. 2014). However, some other research has shown that UC-MSC is less prone to adipogenic differentiation (Hematti and Keating 2013). While adipogenic differentiation ability can be helpful in order to attenuate some subcutaneous lesions in SSc individuals (Lee et al. 2017). Collectively, given that the majority of studies related to cell therapy in SSc patients are conducted with BM/AD MSCs, it seems that AD-MSCs are ideal candidates for cell-based treatments in SSc. There are several reasons for this claim, including the following: 1- they can be extracted more easily than BM- MSCs. 2- they have more proliferative, anti-fibrotic, and immunomodulatory potency compared to BM-MSCs (Scuderi et al. 2013; Del Papa et al. 2017). On the other hand, according to the bulk of studies accompanied on the choice between autologous and allogeneic MSC transplantation for the treatment of SSc subjects, cells derived from autologous sources are not appropriate due to alternations in some of the characteristics of MSCs in the micro-environmental conditions caused by scleroderma along with increasing their tendency to myofibroblastic differentiate and increase tissue fibrosis (Rozier et al. 2018; Peltzer et al. 2018).

Conclusion and future perspectives

The extent of the heterogeneity and severity of scleroderma, as well as the rate of progression in the skin and internal organs, are such that the common treatment options are not completely effective and only can help to alleviate a number of symptoms (Shah and Wigley 2013; Khanna 2011). Hereupon, the evaluation of more efficient approaches is demanded. Given the astonishing outcomes of cell-based therapies for different diseases (Goodarzi et al. 2018b; Rahim and Arjmand 2017; Baradaran-Rafii et al. 2020; Larijani et al. 2020; Arjmand et al. 2019), it isn’t unlikely that cell therapies (specifically using MSCs) will also be effective for individuals with scleroderma. Indeed, MSCs as a practicing member of regenerative medicine with angiogenic, anti-fibrotic, anti-inflammatory, and immunomodulatory functions, can affect the various disordering processes of the disease mainly via secreting specific efficient bioactive molecules (Han et al. 2019). In this context, finding out the most effective type of MSCs and of course, the best dose and method of administration can also shorten the distance to recovery through the MSC-based treatment. Herein, appropriate preclinical (in vitro and in vivo) studies for assessing the safety and efficacy of MSCs can be extremely valuable. Accordingly, based on the preclinical studies around the MSCs transplantation in SSc subjects and comparison of genetic profiles of employed MSCs, it seems that AD-MSCs especially those prepared from allogeneic sources can be considered as gold standard MSCs for clinical application. However, more extensive studies are still needed to find cells with the highest quality. Furthermore, examining the different cell culture conditions for a better cell function and using up-to-date techniques in this area can lead to more effective results. Herein, also increasing the information about the cellular and molecular mechanisms of disease can lead to several incredible advances in the diagnosis and treatment. On the other hand, the advanced omics technology (including genomics, transcriptomics, proteomics, and metabolomics) can be applied to recommend new hypotheses and understand particular underlying mechanisms of diseases (Larijani et al. 2019; Arjmand et al. 2017). Additionally, Knowledge-based computational disease modeling as a worthwhile tool that reduces using animal models, can create a fundamental mechanistic view of the disease. In general, the combination of these multidisciplinary advancements promises progress in recognizing the autoimmune disease and developing targeted therapies. On the other hand, the molecular phenotyping of SSc subjects can provide personalized medicine approaches to specific therapeutic interventions (Arjmand et al. 2017; Arjmand and Larijani 2017) which could raise the possibility of a positive treatment impact.

Abbreviations

SSc:

Systemic Sclerosis

MSC:

Mesenchymal Stem Cell

AOPPs:

Advanced Oxidation Protein Products

HOCl:

Hypochlorous Acid

CCR:

CC chemokine receptor

NSIP:

Nonspecific Interstitial Peumonitis

CAV-1:

Caveolin-1

Th:

T helper

IL:

Interleukin

PKB:

Protein Kinase B

HMGA:

High mobility group A

sRANKL:

soluble Receptor Activator of Nuclear Factor

CFU-F:

Colony-Forming Unit–Fibroblastic

OCN:

Osteocalcin

ALP:

Alkaline phosphatase

Runx2:

Runt-related transcription factor 2

LPL:

Lipoprotein Lipase

PPARγ:

Peroxisome Proliferator-Activated Receptor γ

RGS5:

Regulator of G Protein Signaling 5

CFA:

Complete Freund’s Adjuvant

ETAR:

Anti-endothelin receptor Type-A

AT1R:

Anti-angiotensin Receptor Type − 1

pSmad2:

Phospho-Smad2

bFGF:

Basic Fibroblast Growth Factor

CTGF:

Connective Tissue Growth Factor

FITC:

Fuorescein Isothiocyanate

TSP-1:

Thrombospondin-1

BAL:

Bronchoalveolar lavage

UIP:

Usual Interstitial Pneumonia

RNP:

Ribonucleoprotein

CCL:

C-C Chemokine Ligand

ECM:

Extracellular Matrix

Scl-GVHD:

Sclerodermatous Graft Versus Host Disease

Scl-cGVHD:

Sclerodermatous chronic Graft Versus Host Disease

PAH:

Pulmonary Atrial Hypertension

MCTP:

Monocrotaline

SU5416:

Semaxanib

BM:

Bone Marrow

AD:

Adipose

UC:

Umbilical Cord

PL:

Placenta

HLA-DR:

Human Leukocyte Antigen-DR

EC:

Endothelial Cell

TGFβRII:

TGFβ Receptor II

NGFR:

Nerve Growth Factor Receptor

NGF:

Nerve Growth Factor

EGF:

Epidermal growth factor

ROS:

Reactive Oxygen Species

Tsk1/+:

Tight skin 1

α-SMA:

Alpha-Smooth Muscle Actin

NG2:

Neuron-Glial Antigen 2

SA-βGal:

Senescence-Associated β-Galactosidase

SDF-1:

Stromal Derived Factor-1

CXCR4:

C-X-C chemokine receptor

HGF:

Hepatocyte Growth Factor

Trx-1:

Thioredoxin 1

FSP-1:

Fibroblast-specific protein 1

mTOR:

Mammalian Target Of Rapamycin

miR:

Micro RNA

IDU:

Indolent Digital Ulcers

DU:

Digital Ulcer

PRP:

Platelet-Rich Plasma

ADSVF:

Adipose Tissue-Derived Stromal Vascular Fraction

dcSSc:

Diffuse cutaneous Systemic Sclerosis

ILD:

Interstitial Lung Disease

CHFS:

Cochin Hand Function Scale

ADRC:

Adipose Derived Regenerative Cell

RCS:

Raynaud’s Condition Score

SHAQ:

Scleroderma Health Assessment Questionnaire

IvMHISS:

Italian version of Mouth Handicap in Systemic Sclerosis Scale

VAS:

Visual Analogue Scale

NC:

No Change

NR:

Not Reported

ND:

No Data

PDGFb- R:

Platelet-Derived Growth Factor Receptors

TGFβ:

Transforming Growth Factor beta

COL:

Collagen

MMP:

Matrix Metalloproteinases

TIMP1:

Tissue Inhibitor of Metalloproteinase 1

VEGF:

Vascular Endothelial Growth Factor

FGF:

Fibroblast Growth Factor

IGF-1:

Insulin-like Growth Factor-1

PDGF:

Platelet-Derived Growth Factor

PGE-2:

Prostaglandin E2

IFN-γ:

Interferon-Gamma

TNF-α:

Tumour Necrosis Factor Alpha

GILZ:

Glucocorticoid-Induced Leucine Zipper

IDO:

Indolamine-2,3-dioxygenase

iNOS:

Inducible NO Synthase

TSG-6:

TNF-α-stimulated Gene-6

IL-1RA:

Interleukin-1 Receptor Antagonist

HO-1:

Heme Oxygenase-1

TNFR:

TNF Receptor

GFP:

Green Fluorescent

VEGFR:

Vascular Endothelial Growth Factor Receptor

vWF:

von Willebrand Factor

SOD:

Superoxide Dismutase

PBS:

Phosphate-Buffered Saline

OSM:

Oncostatin M

EQ-5D-5L:

EuroQol-5-Dimensions-5-Level

References

  1. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep. 2018;14(4):484–99.

    PubMed  CAS  Google Scholar 

  2. Adnan ZA. Diagnosis and treatment of scleroderma. Acta Med Indones. 2008;40(2):109–12.

    PubMed  Google Scholar 

  3. Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand−/FAS-mediated T cell apoptosis. Cell Stem Cell. 2012;10(5):544–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Arjmand B, Abdollahi M, Larijani B. Precision medicine: a new revolution in healthcare system. Iran Biomed J. 2017;21(5):282–3.

    PubMed  Google Scholar 

  5. Arjmand B, Goodarzi P, Aghayan H, Payab M, Rahim F, Alavi-Moghadam S, et al. Co-transplantation of human fetal Mesenchymal and hematopoietic stem cells in type 1 diabetic mice model. Front Endocrinol. 2019;10:761.

    Google Scholar 

  6. Arjmand B, Larijani B. Personalized medicine: a new era in endocrinology. Acta Medica Iranica. 2017;55:142–3.

    PubMed  Google Scholar 

  7. Artlett CM. Animal models of systemic sclerosis: their utility and limitations. Open Access Rheumatol. 2014;6:65.

    PubMed  PubMed Central  Google Scholar 

  8. Asano Y. Systemic sclerosis. J Dermatol. 2018;45(2):128–38.

    PubMed  Google Scholar 

  9. Asano Y, Sato S. Animal models of scleroderma: current state and recent development. Curr Rheumatol Rep. 2013;15(12):382.

    PubMed  Google Scholar 

  10. Baradaran-Rafii A, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Aghayan HR, et al. Cell-based approaches towards treating age-related macular degeneration. Cell Tissue Bank. 2020;21(3):339–47.

  11. Becker MO, Kill A, Kutsche M, Guenther J, Rose A, Tabeling C, et al. Vascular receptor autoantibodies in pulmonary arterial hypertension associated with systemic sclerosis. Am J Respir Crit Care Med. 2014;190(7):808–17.

    PubMed  CAS  Google Scholar 

  12. Bissell L-A, Anderson M, Burgess M, Chakravarty K, Coghlan G, Dumitru RB, et al. Consensus best practice pathway of the UK systemic sclerosis study group: management of cardiac disease in systemic sclerosis. Rheumatology. 2017;56(6):912–21.

    PubMed  Google Scholar 

  13. Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol. 2013;229(2):274–85.

    PubMed  CAS  Google Scholar 

  14. Burt RK, Farge D. Autologous HSCT is efficacious, but can we make it safer? Nat Rev Rheumatol. 2018;14(4):189–91.

    PubMed  Google Scholar 

  15. Cahill EF, Kennelly H, Carty F, Mahon BP, English K. Hepatocyte growth factor is required for mesenchymal stromal cell protection against bleomycin-induced pulmonary fibrosis. Stem Cells Transl Med. 2016;5(10):1307–18.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Cai X, Lin Y, Friedrich CC, Neville C, Pomerantseva I, Sundback CA, et al. Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev Rep. 2009;5(4):437–45.

    PubMed  Google Scholar 

  17. Cardenas CLL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013;9(2):e1003291.

    Google Scholar 

  18. Castello-Cros R, Whitaker-Menezes D, Molchansky A, Purkins G, Soslowsky LJ, Beason DP, et al. Scleroderma-like properties of skin from caveolin-1-deficient mice: implications for new treatment strategies in patients with fibrosis and systemic sclerosis. Cell Cycle. 2011;10(13):2140–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Chan YC, Roy S, Huang Y, Khanna S, Sen CK. The microRNA miR-199a-5p down-regulation switches on wound angiogenesis by derepressing the v-ets erythroblastosis virus E26 oncogene homolog 1-matrix metalloproteinase-1 pathway. J Biol Chem. 2012;287(49):41032–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen C, Wang D, Moshaverinia A, Liu D, Kou X, Yu W, et al. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res. 2017b;27(4):559–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Chen W, Xia ZK, Zhang MH, Ding GC, Zhang XY, Wang ZX, et al. Adipose tissue-derived stem cells ameliorates dermal fibrosis in a mouse model of scleroderma. Asian Pac J Trop Med. 2017a;10(1):52–6.

    PubMed  CAS  Google Scholar 

  22. Chighizola C, Conrad K, Meroni PL. Systemic sclerosis. The General Practice Guide to Autoimmune Diseases; 2011. p. 15.

    Google Scholar 

  23. Chopra H, Hung M, Kwong D, Zhang C, Pow E. Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Int. 2018;2018:9847015.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Christner PJ, Artlett CM, Conway RF, Jiménez SA. Increased numbers of microchimeric cells of fetal origin are associated with dermal fibrosis in mice following injection of vinyl chloride. Arthritis Rheumatism. 2000;43(11):2598–605.

    PubMed  CAS  Google Scholar 

  25. Chung MP, Monick MM, Hamzeh NY, Butler NS, Powers LS, Hunninghake GW. Role of repeated lung injury and genetic background in bleomycin-induced fibrosis. Am J Respir Cell Mol Biol. 2003;29(3):375–80.

    PubMed  CAS  Google Scholar 

  26. Cipriani P, Di Benedetto P, Liakouli V, Del Papa B, Di Padova M, Di Ianni M, et al. Mesenchymal stem cells (MSC s) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Treg s) with a functional phenotype: implications for cellular-based therapy. Clin Exp Immunol. 2013a;173(2):195–206.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Cipriani P, Di Benedetto P, Ruscitti P, Campese AF, Liakouli V, Carubbi F, et al. Impaired endothelium-mesenchymal stem cells cross-talk in systemic sclerosis: a link between vascular and fibrotic features. Arthritis Res Ther. 2014;16(5):442.

    PubMed  PubMed Central  Google Scholar 

  28. Cipriani P, Marrelli A, Benedetto PD, Liakouli V, Carubbi F, Ruscitti P, et al. Scleroderma Mesenchymal stem cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis. 2013b;16(3):595–607.

    PubMed  CAS  Google Scholar 

  29. Cras A, Farge D, Carmoi T, Lataillade J-J, Wang DD, Sun L. Update on mesenchymal stem cell-based therapy in lupus and scleroderma. Arthritis Res Ther. 2015;17(1):301 Available from: http://europepmc.org/abstract/MED/26525582, https://doi.org/10.1186/s13075-015-0819-7, https://europepmc.org/articles/PMC4631077, https://europepmc.org/articles/PMC4631077?pdf=render.

    PubMed  PubMed Central  Google Scholar 

  30. da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13.

    Google Scholar 

  31. Daumas A, Magalon J, Delaunay F, Abellan M, Philandrianos C, Sabatier F, et al. Fat grafting for treatment of facial scleroderma. Clin Plast Surg. 2020;47(1):155–63.

    PubMed  Google Scholar 

  32. Daumas A, Magalon J, Jouve E, Truillet R, Casanova D, Giraudo L, et al. Long-term follow-up after autologous adipose-derived stromal vascular fraction injection into fingers in systemic sclerosis patients. Curr Res Transl Med. 2017;65(1):40–3.

    PubMed  CAS  Google Scholar 

  33. Dazzi F, van Laar JM, Cope A, Tyndall A. Cell therapy for autoimmune diseases. Arthritis research & therapy. 2007;9(2):206.

    Google Scholar 

  34. Del Papa N, Di Luca G, Andracco R, Zaccara E, Maglione W, Pignataro F, et al. Regional grafting of autologous adipose tissue is effective in inducing prompt healing of indolent digital ulcers in patients with systemic sclerosis: results of a monocentric randomized controlled study. Arthritis Res Ther. 2019;21(1):1–11.

    Google Scholar 

  35. Del Papa N, Pignataro F, Zaccara E, Maglione W, Minniti A. Autologous hematopoietic stem cell transplantation for treatment of systemic sclerosis. Front Immunol. 2018;9:2390.

    PubMed  PubMed Central  Google Scholar 

  36. Del Papa N, Zaccara E, Di Luca G, Andracco R, Maglione W, Vitali C. Adipose-derived cell transplantation in systemic sclerosis: state of the art and future perspectives. J Scleroderma Related Disord. 2017;2(1):33–41.

    Google Scholar 

  37. Desbois AC, Cacoub P. Systemic sclerosis: an update in 2016. Autoimmun Rev. 2016;15(5):417–26.

    PubMed  Google Scholar 

  38. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    PubMed  CAS  Google Scholar 

  39. Duncan MR, Berman B. Differential regulation of collagen, glycosaminoglycan, fibronectin, and collagenase activity production in cultured human adult dermal fibroblasts by interleukin 1-alpha and beta and tumor necrosis factor-alpha and beta. J Investig Dermatol. 1989;92(5):699–706.

    PubMed  CAS  Google Scholar 

  40. El Omar R, Beroud J, Stoltz J-F, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng B Rev. 2014;20(5):523–44.

    Google Scholar 

  41. Elhai M, Meune C, Boubaya M, Avouac J, Hachulla E, Balbir-Gurman A, et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis. 2017;76(11):1897–905.

    PubMed  Google Scholar 

  42. Figueroa FE, Carrión F, Villanueva S, Khoury M. Mesenchymal stem cell treatment for autoimmune diseases: a critical review. Biol Res. 2012;45(3):269–77.

    PubMed  Google Scholar 

  43. Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour A-R, Sahebjam M, et al. Stem cell-based approach for the treatment of Parkinson's disease. Med J Islam Repub Iran. 2015;29:168.

    PubMed  PubMed Central  Google Scholar 

  44. Goodarzi P, Aghayan HR, Soleimani M, Norouzi-Javidan A, Mohamadi-Jahani F, Jahangiri S, et al. Stem cell therapy for treatment of epilepsy. Acta Med Iran. 2014;52:651–5.

    PubMed  Google Scholar 

  45. Goodarzi P, Alavi-Moghadam S, Payab M, Larijani B, Rahim F, Gilany K, et al. Metabolomics analysis of mesenchymal stem cells. Int J Mol Cell Med. 2019a;8(Suppl1):30.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Goodarzi P, Alavi-Moghadam S, Sarvari M, Beik AT, Falahzadeh K, Aghayan H, et al. Adipose tissue-derived stromal cells for wound healing. Adv Exp Med Biol. 2018;1119:133–49.

  47. Goodarzi P, Falahzadeh K, Aghayan H, Jahani FM, Payab M, Gilany K, et al. GMP-compliant human fetal skin fibroblasts for wound healing. Arch Neurosci. 2018b;5(3).

  48. Goodarzi P, Payab M, Alavi-Moghadam S, Larijani B, Rahim F, Bana N, et al. Development and validation of Alzheimer’s disease Animal model for the purpose of regenerative medicine. Cell Tissue Bank. 2019b;20(2):141–51.

    PubMed  Google Scholar 

  49. Griffin M, Ryan CM, Pathan O, Abraham D, Denton CP, Butler PEM. Characteristics of human adipose derived stem cells in scleroderma in comparison to sex and age matched normal controls: implications for regenerative medicine. Stem Cell Res Ther. 2017;8(1):23 Available from: http://europepmc.org/abstract/MED/28173869, https://doi.org/10.1186/s13287-016-0444-7, https://europepmc.org/articles/PMC5297142, https://europepmc.org/articles/PMC5297142?pdf=render.

    PubMed  PubMed Central  Google Scholar 

  50. Guiducci S, Distler O, Distler J, Matucci-Cerinic M. Mechanisms of vascular damage in SSc—implications for vascular treatment strategies. Rheumatology. 2008;47(suppl_5):v18–20.

    PubMed  CAS  Google Scholar 

  51. Guiducci S, Manetti M, Romano E, Mazzanti B, Ceccarelli C, Dal Pozzo S, et al. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro. Ann Rheum Dis. 2011;70(11):2011–21.

    PubMed  CAS  Google Scholar 

  52. Guimarães-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell. 2017;20(3):345–59. e5.

    PubMed  PubMed Central  Google Scholar 

  53. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886.

    PubMed Central  CAS  Google Scholar 

  54. Hasegawa M, Fujimoto M, Matsushita T, Hamaguchi Y, Takehara K, Sato S. Serum chemokine and cytokine levels as indicators of disease activity in patients with systemic sclerosis. Clin Rheumatol. 2011;30(2):231–7.

    PubMed  Google Scholar 

  55. Hasegawa M, Sato S, Fujimoto M, Ihn H, Kikuchi K, Takehara K. Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J Rheumatol. 1998;25(2):308–13.

    PubMed  CAS  Google Scholar 

  56. Hematti P, Keating A. Mesenchymal stromal cells: biology and clinical applications: springer science & business media; 2013.

    Google Scholar 

  57. Horikawa M, Hasegawa M, Komura K, Hayakawa I, Yanaba K, Matsushita T, et al. Abnormal natural killer cell function in systemic sclerosis: altered cytokine production and defective killing activity. J Investig Dermatol. 2005;125(4):731–7.

    PubMed  CAS  Google Scholar 

  58. Huleihel L, Sellares J, Cardenes N, Álvarez D, Faner R, Sakamoto K, et al. Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. Am J Phys Lung Cell Mol Phys. 2017;313(1):L92–L103.

    Google Scholar 

  59. Jiang M, Yu Y, Luo J, Gao Q, Zhang L, Wang Q, et al. Bone marrow-derived mesenchymal stem cells expressing thioredoxin 1 attenuate bleomycin-induced skin fibrosis and oxidative stress in scleroderma. J Investig Dermatol. 2017;137(6):1223–33.

    PubMed  CAS  Google Scholar 

  60. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

    PubMed  CAS  Google Scholar 

  61. Jimenez SA, Christner PJ. Murine animal models of systemic sclerosis. Curr Opin Rheumatol. 2002;14(6):671–80.

    PubMed  CAS  Google Scholar 

  62. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    PubMed  CAS  Google Scholar 

  63. Keyser KA, Beagles KE, Kiem H-P. Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation. Cell Transplant. 2007;16(5):555–62.

    PubMed  Google Scholar 

  64. Khanna D. Diagnosis and treatment of systemic and localized scleroderma. Expert Rev Dermatol. 2011;6(3):287–302.

    Google Scholar 

  65. Khanna D, Caldron P, Martin R, Kafaja S, Spiera R, Shahouri S, et al. Adipose-derived cell therapy for hand dysfunction in patients with systemic sclerosis: a randomized, double-blind, placebo-controlled trial. Age (years). 2018;54(9):52–12.

    Google Scholar 

  66. Kinnaird T, Stabile E, Burnett M, Shou M, Lee C, Barr S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–9.

    PubMed  CAS  Google Scholar 

  67. Krieg T, Takehara K. Skin disease: a cardinal feature of systemic sclerosis. Rheumatology. 2006;48(suppl_3):iii14–i8.

    Google Scholar 

  68. Krieg T, Takehara K. Skin disease: a cardinal feature of systemic sclerosis. Rheumatology. 2009;48(suppl_3):iii14–i8.

    PubMed  Google Scholar 

  69. Lakos G, Takagawa S, Varga J. Animal models of scleroderma. Autoimmunity: Springer; 2004. p. 377–93.

    Google Scholar 

  70. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7(10):e47559.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Lan YW, Theng SM, Huang TT, Choo KB, Chen CM, Kuo HP, et al. Oncostatin M-preconditioned mesenchymal stem cells alleviate bleomycin-induced pulmonary fibrosis through paracrine effects of the hepatocyte growth factor. Stem Cells Transl Med. 2017;6(3):1006–17.

    PubMed  CAS  Google Scholar 

  72. Larghero J, Farge D, Braccini A, Lecourt S, Scherberich A, Fois E, et al. Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis. 2008;67(4):443–9.

    PubMed  CAS  Google Scholar 

  73. Larijani B, Aghayan H, Goodarzi P, Mohamadi-Jahani F, Norouzi-Javidan A, Dehpour AR, et al. Clinical grade human adipose tissue-derived mesenchymal stem cell banking. Acta Med Iran. 2015;53(9):540–6.

    PubMed  Google Scholar 

  74. Larijani B, Goodarzi P, Payab M, Alavi-Moghadam S, Rahim F, Bana N, et al. Metabolomics and cell therapy in diabetes mellitus. Int J Mol Cell Med (IJMCM). 2019;8(2):0.

    CAS  Google Scholar 

  75. Larijani B, Heravani NF, Alavi-Moghadam S, Goodarzi P, Rezaei-Tavirani M, Payab M, et al. Cell therapy targets for autism spectrum disorders: hopes, challenges and future directions. 2020.

    Google Scholar 

  76. Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K, et al. IL-6 blockade attenuates the development of murine sclerodermatous chronic graft-versus-host disease. J Investig Dermatol. 2012;132(12):2752–61.

    PubMed  Google Scholar 

  77. Lee R, Reese C, Carmen-Lopez G, Perry B, Bonner M, Zemskova M, et al. Deficient Adipogenesis of scleroderma patient and healthy African American monocytes. Front Pharmacol. 2017;8:174.

    PubMed  PubMed Central  Google Scholar 

  78. Lee SH, Lee EJ, Lee SY, Kim JH, Shim JJ, Shin C, et al. The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice. Exp Lung Res. 2014;40(3):117–25.

    PubMed  CAS  Google Scholar 

  79. LeROY EC, Medsger TA Jr. Criteria for the classification of early systemic sclerosis. J Rheumatol. 2001;28(7):1573–6.

    PubMed  CAS  Google Scholar 

  80. Liang J, Zhang H, Kong W, Deng W, Wang D, Feng X, et al. Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion: a long-term retrospective study. Stem Cell Res Ther. 2018;9(1):1–10.

    Google Scholar 

  81. Lim JY, Ryu DB, Lee SE, Park G, Min CK. Mesenchymal stem cells (MSCs) attenuate cutaneous Sclerodermatous graft-versus-host disease (Scl-GVHD) through inhibition of immune cell infiltration in a mouse model. J Investigative Dermatol. 2017;137(9):1895–904.

    CAS  Google Scholar 

  82. Luz-Crawford P, Noël D, Fernandez X, Khoury M, Figueroa F, Carrión F, et al. Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One. 2012;7(9):e45272–e.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Maria AT, Maumus M, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis. Clin Rev Allergy Immunol. 2017;52(2):234–59.

    CAS  Google Scholar 

  84. Maria AT, Toupet K, Bony C, Pirot N, Vozenin MC, Petit B, et al. Antifibrotic, antioxidant, and immunomodulatory effects of mesenchymal stem cells in HOCl-induced systemic sclerosis. Arthritis Rheumatol. 2016a;68(4):1013–25.

    PubMed  CAS  Google Scholar 

  85. Maria AT, Toupet K, Maumus M, Fonteneau G, Le Quellec A, Jorgensen C, et al. Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. J Autoimmun. 2016b;70:31–9.

    PubMed  CAS  Google Scholar 

  86. Maria ATJ, Toupet K, Maumus M, Rozier P, Vozenin M-C, Le Quellec A, et al. Fibrosis Development in HOCl-Induced Systemic Sclerosis: A Multistage Process Hampered by Mesenchymal Stem Cells. Front Immunol. 2018;9:2571.

    PubMed  PubMed Central  Google Scholar 

  87. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71(2):181–97.

    PubMed  CAS  Google Scholar 

  88. Matsushita T, Fujimoto M, Hasegawa M, Matsushita Y, Komura K, Ogawa F, et al. BAFF antagonist attenuates the development of skin fibrosis in tight-skin mice. J Investig Dermatol. 2007;127(12):2772–80.

    PubMed  CAS  Google Scholar 

  89. Matsushita T, Hasegawa M, Hamaguchi Y, Takehara K, Sato S. Longitudinal analysis of serum cytokine concentrations in systemic sclerosis: association of interleukin 12 elevation with spontaneous regression of skin sclerosis. J Rheumatol. 2006;33(2):275–84.

    PubMed  CAS  Google Scholar 

  90. Matsushita T, Kobayashi T, Mizumaki K, Kano M, Sawada T, Tennichi M, et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci Adv. 2018;4(7):eaas9944.

    PubMed  PubMed Central  Google Scholar 

  91. Maumus M, Jorgensen C, Noël D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie. 2013;95(12):2229–34.

    PubMed  CAS  Google Scholar 

  92. Mayes MD. Scleroderma epidemiology. Rheum Dis Clin N Am. 2003;29(2):239–54.

    Google Scholar 

  93. Mercer PF, Woodcock HV, Eley JD, Platé M, Sulikowski MG, Durrenberger PF, et al. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax. 2016;71(8):701–11.

    PubMed  PubMed Central  Google Scholar 

  94. Morin F, Kavian N, Batteux F. Animal models of systemic sclerosis. Curr Pharm Des. 2015;21(18):2365–79.

    PubMed  CAS  Google Scholar 

  95. Nicolls MR, Mizuno S, Taraseviciene-Stewart L, Farkas L, Drake JI, Husseini AA, et al. New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulmonary Circulation. 2012;2(4):434–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Nikpour M, Stevens W, Herrick A, Proudman S. Epidemiology of systemic sclerosis. Best Pract Res Clin Rheumatol. 2010;24:857–69.

    PubMed  Google Scholar 

  97. Okamura A, Matsushita T, Komuro A, Kobayashi T, Maeda S, Hamaguchi Y, et al. Adipose-derived stromal/stem cells successfully attenuate the fibrosis of scleroderma mouse models. Int J Rheum Dis. 2020;23(2):216–25.

    PubMed  CAS  Google Scholar 

  98. Onesti MG, Fioramonti P, Carella S, Fino P, Marchese C, Scuderi N. Improvement of mouth functional disability in systemic sclerosis patients over one year in a trial of fat transplantation versus adipose-derived stromal cells. Stem Cells Int. 2016;2016:2416192.

    PubMed  PubMed Central  Google Scholar 

  99. Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.

    PubMed  Google Scholar 

  100. Paduano F, Marrelli M, Amantea M, Rengo C, Rengo S, Goldberg M, et al. Adipose tissue as a strategic source of mesenchymal stem cells in bone regeneration: a topical review on the most promising craniomaxillofacial applications. Int J Mol Sci. 2017;18(10):2140.

    PubMed Central  Google Scholar 

  101. Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of systemic sclerosis. Front Immunol. 2015;6:272.

    PubMed  PubMed Central  Google Scholar 

  102. Payab M, Goodarzi P, Heravani NF, Hadavandkhani M, Zarei Z, Falahzadeh K, et al. Stem cell and obesity: current state and future perspective. Cell Biol Transl Med. 2018;2: Springer:1–22.

    Google Scholar 

  103. Peltzer J, Aletti M, Frescaline N, Busson E, Lataillade J-J, Martinaud C. Mesenchymal stromal cells based therapy in systemic sclerosis: rational and challenges. Front Immunol. 2018;9:2013.

    PubMed  PubMed Central  Google Scholar 

  104. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative Med. 2019;4(1):1–15.

    CAS  Google Scholar 

  105. Poudel DR, Jayakumar D, Danve A, Sehra ST, Derk CT. Determinants of mortality in systemic sclerosis: a focused review. Rheumatol Int. 2018;38(10):1847–58.

    PubMed  Google Scholar 

  106. Radbruch A, Thiel A. Cell therapy for autoimmune diseases: does it have a future? Ann Rheumatic Dis. 2004;63(suppl 2):ii96–ii101.

    CAS  Google Scholar 

  107. Rahim F, Arjmand B. Stem cell clinical trials for multiple sclerosis: the past, present and future. Neurological Regeneration: Springer; 2017. p. 159–72.

    Google Scholar 

  108. Resnick IB, Metodiev K, Lazarova P. Hematopoietic cell transplantation for autoimmune diseases: a review of history, current state, and future issues. Immunotherapy-Myths, Reality, Ideas, Future: IntechOpen; 2017.

    Google Scholar 

  109. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002;109(3):337–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Rosa SB, Voltarelli JC, Chies JAB, Pranke P. The use of stem cells for the treatment of autoimmune diseases. Braz J Med Biol Res. 2007;40(12):1579–97.

    PubMed  CAS  Google Scholar 

  111. Rozier P, Maria A, Goulabchand R, Jorgensen C, Guilpain P, Noël D. Mesenchymal stem cells in systemic sclerosis: allogenic or autologous approaches for therapeutic use? Front Immunol. 2018;9:2938.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Rubio GA, Elliot SJ, Wikramanayake TC, Xia X, Pereira-Simon S, Thaller SR, et al. Mesenchymal stromal cells prevent bleomycin-induced lung and skin fibrosis in aged mice and restore wound healing. J Cell Physiol. 2018;233(8):5503–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Ruiz M, Cosenza S, Maumus M, Jorgensen C, Noël D. Therapeutic application of mesenchymal stem cells in osteoarthritis. Expert Opin Biol Ther. 2016;16(1):33–42.

    PubMed  CAS  Google Scholar 

  114. Sapadin AN, Fleischmajer R. Treatment of scleroderma. Arch Dermatol. 2002;138(1):99–105.

    PubMed  CAS  Google Scholar 

  115. Scuderi N, Ceccarelli S, Onesti MG, Fioramonti P, Guidi C, Romano F, et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transplant. 2013;22(5):779–95.

    PubMed  Google Scholar 

  116. Shah AA, Wigley FM. My approach to the treatment of scleroderma. Mayo Clinic Proceedings; 2013: Elsevier.

    Google Scholar 

  117. Sobolewski P, Maślińska M, Wieczorek M, Łagun Z, Malewska A, Roszkiewicz M, et al. Systemic sclerosis–multidisciplinary disease: clinical features and treatment. Reumatologia. 2019a;57(4):221–31.

    PubMed  PubMed Central  Google Scholar 

  118. Sobolewski P, Maślińska M, Wieczorek M, Lagun Z, Malewska A, Roszkiewicz M, et al. Systemic sclerosis – multidisciplinary disease: clinical features and treatment. Reumatologia/Rheumatology. 2019b;57:221–33.

    PubMed  Google Scholar 

  119. Soleimani M, Aghayan HR, Goodarzi P, Hagh MF, Lajimi AA, Saki N, et al. Stem cell therapy–approach for multiple sclerosis treatment. Arch Neurosci. 2016;3(1):e21564.

    Google Scholar 

  120. Song J, Volz S, Liodaki M, Mailänder P, Kalousis K. Stem cells therapy: the future in the management of systemic sclerosis? A case report. Hell J Nucl Med. 2017;20(Suppl):164.

    PubMed  Google Scholar 

  121. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Phys Lung Cell Mol Phys. 2009;297(6):L1013–L32.

    CAS  Google Scholar 

  122. Sticherling M. Systemic sclerosis–dermatological aspects. Part 1: pathogenesis, epidemiology, clinical findings. J Dtsch Dermatol Ges. 2012;10(10):705–16.

    PubMed  Google Scholar 

  123. Storkanova H, Tomcik M. Animal models of systemic sclerosis. Systemic Sclerosis. 2017;181.

  124. Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med. 2018;378(1):35–47.

    PubMed  PubMed Central  Google Scholar 

  125. Tashiro J, Elliot SJ, Gerth DJ, Xia X, Pereira-Simon S, Choi R, et al. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis. Transl Res. 2015;166(6):554–67.

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Toyoshima A, Yasuhara T. Mesenchymal stem cell therapy for ischemic stroke. Acta Med Okayama. 2017;71(4):263–8.

    PubMed  CAS  Google Scholar 

  127. Uji M, Nakada A, Nakamura T, Hirata K. Effect of intratracheal administration of adipose-derived stromal cells on bleomycin-induced lung injury in a rat model. Osaka City Med J. 2015;61:81–91.

    PubMed  CAS  Google Scholar 

  128. van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. Jama. 2014;311(24):2490–8.

    PubMed  Google Scholar 

  129. van Laar JM, Sullivan K. Stem cell transplantation in systemic sclerosis. Curr Opin Rheumatol. 2013;25(6):719–25.

    PubMed  Google Scholar 

  130. Velier M, Simoncini S, Abellan M, Francois P, Eap S, Lagrange A, et al. Adipose-derived stem cells from systemic sclerosis patients maintain pro-Angiogenic and Antifibrotic paracrine effects in vitro. J Clin Med. 2019;8(11):1979.

    PubMed Central  CAS  Google Scholar 

  131. Virzì F, Bianca P, Giammona A, Apuzzo T, Di Franco S, Mangiapane LR, et al. Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients. Stem Cell Res Ther. 2017;8(1):236.

    PubMed  PubMed Central  Google Scholar 

  132. Wang B, Yao K, Huuskes BM, Shen H-H, Zhuang J, Godson C, et al. Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther. 2016;24(7):1290–301.

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Wegmeyer H, Bröske A-M, Leddin M, Kuentzer K, Nisslbeck AK, Hupfeld J, et al. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev. 2013;22(19):2606–18.

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Wehbe T, Saab MA, Chahine NA, Margossian T. Mesenchymal stem cell therapy for refractory scleroderma: a report of 2 cases. Stem Cell Investigation. 2016;3:48.

    PubMed  PubMed Central  Google Scholar 

  135. Wei J, Bhattacharyya S, Tourtellotte WG, Varga J. Fibrosis in systemic sclerosis: emerging concepts and implications for targeted therapy. Autoimmun Rev. 2011;10(5):267–75.

    PubMed  CAS  Google Scholar 

  136. Yamamoto T. Animal model of systemic sclerosis. J Dermatol. 2010;37(1):26–41.

    PubMed  CAS  Google Scholar 

  137. Yamamoto T. Animal Models of Systemic Sclerosis. Animal Models for the Study of Human Disease: Elsevier; 2017. p. 951–66.

    Google Scholar 

  138. Yamamoto T, Takagawa S, Kuroda M, Nishioka K. Effect of interferon-γ on experimental scleroderma induced by bleomycin. Arch Dermatol Res. 2000;292(7):362–5.

    PubMed  CAS  Google Scholar 

  139. Yoshizaki A, Yanaba K, Iwata Y, Komura K, Ogawa A, Akiyama Y, et al. Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J Immunol. 2010;185(4):2502–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Yu H, Lu K, Zhu J. Wang Ja. Stem cell therapy for ischemic heart diseases. Br Med Bull. 2017;121(1):135–54.

    PubMed  Google Scholar 

  141. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68.

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Zeineddine N, Khoury LE, Mosak J. Systemic sclerosis and malignancy: a review of current data. J Clin Med Res. 2016;8(9):625–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Zhang H, Liang J, Tang X, Wang D, Feng X, Wang F, et al. Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis. Arthritis Res Ther. 2017;19(1):165.

    PubMed  PubMed Central  Google Scholar 

  144. Zhang XL, Xing RG, Chen L, Liu CR, Miao ZG. PI3K/Akt signaling is involved in the pathogenesis of bleomycininduced pulmonary fibrosis via regulation of epithelialmesenchymal transition. Mol Med Rep. 2016;14(6):5699–706.

    PubMed  CAS  Google Scholar 

  145. Zhao Q, Ren H, Han Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother. 2016;2(1):3–20.

    Google Scholar 

Download references

Funding

This article received no specific grant from any funding agency.

Author information

Affiliations

Authors

Contributions

Mina Abedi and Sepideh Alavi-Moghadam wrote the first draft. Parisa Goodarzi and Fereshteh Mohamadi-jahani helped to study and gather information, Moloud Payab and Forough Azam Sayahpour extensively edited the manuscript. Bagher Larijani participated in a critical review. Babak Arjmand helped supervise the project and gave final approval of the version to be published. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Babak Arjmand.

Ethics declarations

Competing interests

There is no Conflicts of/ Competing interest.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abedi, M., Alavi-Moghadam, S., Payab, M. et al. Mesenchymal stem cell as a novel approach to systemic sclerosis; current status and future perspectives. Cell Regen 9, 20 (2020). https://doi.org/10.1186/s13619-020-00058-0

Download citation

Keywords

  • Anti- fibrotic effect
  • Autoimmune disease
  • Cell therapy
  • Immunomodulation
  • Mesenchymal stem cells
  • Regenerative medicine
  • Systemic sclerosis